Output_llama2_70-15-15_new
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6310
- Accuracy: 0.6474
- Precision: 0.6760
- Recall: 0.6474
- F1: 0.6376
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 46 | 0.7791 | 0.4808 | 0.2311 | 0.4808 | 0.3122 |
No log | 2.0 | 92 | 0.7556 | 0.4872 | 0.7519 | 0.4872 | 0.3262 |
No log | 3.0 | 138 | 0.7071 | 0.5064 | 0.5708 | 0.5064 | 0.4086 |
No log | 4.0 | 184 | 0.7045 | 0.5 | 0.5549 | 0.5 | 0.3971 |
No log | 5.0 | 230 | 0.6714 | 0.5705 | 0.6227 | 0.5705 | 0.5340 |
No log | 6.0 | 276 | 0.6976 | 0.4936 | 0.5303 | 0.4936 | 0.3932 |
No log | 7.0 | 322 | 0.6453 | 0.6603 | 0.6906 | 0.6603 | 0.6507 |
No log | 8.0 | 368 | 0.6640 | 0.5769 | 0.6429 | 0.5769 | 0.5354 |
No log | 9.0 | 414 | 0.6460 | 0.6154 | 0.6643 | 0.6154 | 0.5928 |
No log | 10.0 | 460 | 0.6310 | 0.6474 | 0.6760 | 0.6474 | 0.6376 |
Framework versions
- PEFT 0.10.0
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for Ahatsham/Output_llama2_70-15-15_new
Base model
meta-llama/Meta-Llama-3-8B