|
--- |
|
language: |
|
- ar |
|
license: apache-2.0 |
|
base_model: nadsoft/hamsa-v0.1-beta |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- nadsoft/nadsoft-meetings-v2 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Hamsa-meetings |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: nadsoft/nadsoft-meetings-v2 |
|
type: nadsoft/nadsoft-meetings-v2 |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 43.449519230769226 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Hamsa-meetings |
|
|
|
This model is a fine-tuned version of [nadsoft/hamsa-v0.1-beta](https://huggingface.co/nadsoft/hamsa-v0.1-beta) on the nadsoft/nadsoft-meetings-v2 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9346 |
|
- Wer Ortho: 43.4495 |
|
- Wer: 43.4495 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 2000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| |
|
| 0.4883 | 2.91 | 250 | 0.6170 | 40.2644 | 40.2644 | |
|
| 0.1678 | 5.81 | 500 | 0.6893 | 43.6899 | 43.6899 | |
|
| 0.0749 | 8.72 | 750 | 0.7367 | 42.0673 | 42.0673 | |
|
| 0.0352 | 11.63 | 1000 | 0.7829 | 42.6683 | 42.6683 | |
|
| 0.0214 | 14.53 | 1250 | 0.8553 | 43.9904 | 43.9904 | |
|
| 0.0146 | 17.44 | 1500 | 0.9061 | 43.3894 | 43.3894 | |
|
| 0.0112 | 20.35 | 1750 | 0.9225 | 44.2909 | 44.2909 | |
|
| 0.0104 | 23.26 | 2000 | 0.9346 | 43.4495 | 43.4495 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|