Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Model Description
This is an SFT(Supervised Fine-Tuned) Model meant for SQl-based text generation tasks. We have used the LoRa(Low-Ranking Adaptors) method for Fine-Tuning.
Model Summary
train/loss : 0.4354 train/learning_rate: 0.00017567567567567568 train/epoch : 5.0 train/global_step : 10
Inference Code
After doing necessary imports
device_map = {"": 0} model_id = "mistralai/Mistral-7B-v0.1" new_model = "Akil15/mistral_SQL_v.0.1"
Reload model in FP16 and merge it with LoRA weights
base_model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map=device_map, )
model = PeftModel.from_pretrained(base_model, new_model) model = model.merge_and_unload()
Reload tokenizer to save it
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right"
sample text(example):
text = """Question: How many vegetable farms with over 100 acres of cultivated land utilize organic farming methods, and what is the average yield per acre for these farms? Context:CREATE TABLE vegetable_farm (Acres INTEGER,Organic BOOLEAN,Yield_Per_Acre DECIMAL);"""
text = input() inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Note: Change the max_new_tokens length based on the question-context text input or just define it to 100
Framework versions
- PEFT 0.4.0
- Downloads last month
- 1