Akjava's picture
Update README.md
82d6aac verified
|
raw
history blame
9.18 kB
metadata
license: mit
language:
  - en
tags:
  - audio
  - text-to-speech
  - matcha-tts

Matcha-TTS CommonVoice EN001

Source Audio

https://commonvoice.mozilla.org/en/datasets Common Voice Corpus 1

I called audios 42da7f26(head-audio-id)_290(files) EN001 (No plan to include audios in this repo)

Any Good point?

LJSpeech is much better quality,but it's female voice.

VCTK 107 voices are similar quality,but that is ODC-By License.

This audio is just under MIT more easy to continue training or something.

however I recommend you use VCTK,ODC-By License is not so problem.I'm going to create new voices with this.

How to Train

Train with IPA text(this folk) https://github.com/akjava/Matcha-TTS-Japanese

check this repo's config files. however there are no audio copy tools.TODO later

Files Info

checkpoints

Matcha-TTS checkpoint - epoch seems big but train with only 290 audios

see Training metrics

ONNX

onnx simplified loading speed is now 1.5 times faster.

from onnxsim import simplify
import onnx

model = onnx.load("en001_6399_T2.onnx")
model_simp, check = simplify(model)

onnx.save(model_simp, "en001_6399_T2_simplify.onnx")

timesteps is default(5) ,small time steps ;The infer speed is somewhat faster, but the quality is lower.

If you need original onnx do like official way

python -m matcha.onnx.export checkpoint_epoch=5699.ckpt en001_5699t2.onnx  --vocoder-name hifigan_T2_v1 --n-timesteps 5 --vocoder-checkpoint generator_v1
python -m matcha.onnx.export checkpoint_epoch=5699.ckpt en001_5699.onnx  --vocoder-name hifigan_univ_v1 --n-timesteps 5 --vocoder-checkpoint g_02500000
  • T2 means Vocoder is hifigan_T2_v1
  • Unif means Voder is hifigan_univ_v1

you can quantize this onnx,but 3 times smaller, but 4-5 times slower,that why I did't include that.

from onnxruntime.quantization import quantize_dynamic, QuantType
quantized_model = quantize_dynamic(src_model_path, dst_model_path, weight_type=QuantType.QUInt8)

To use onnx need something,below is old sample

const _pad = "_";
const _punctuation = ";:,.!?¡¿—…\"«»“” ";
const _letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
const _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ";

// below code called Spread syntax
const Symbols = [_pad, ..._punctuation, ..._letters, ..._letters_ipa];

const SpaceId = Symbols.indexOf(' ');

const symbolToId = {};
const idToSymbol = {};

// initialize symbolToId and  idToSymbol
for (let i = 0; i < Symbols.length; i++) {
symbolToId[Symbols[i]] = i;
idToSymbol[i] = Symbols[i];
}

class MatchaOnnx {
    constructor() {
    }
    async load_model(model_path,options={}){
        this.session = await ort.InferenceSession.create(model_path,options);
    }

        get_output_names_html(){
        if (typeof this.session=='undefined'){
            return null
        }
        let outputNamesString = '[outputs]<br>';
        const outputNames = this.session.outputNames;
        for (let outputName of outputNames) {
            console.log(outputName)
            outputNamesString+=outputName+"<br>"
        }
        return outputNamesString.trim()
    }

    get_input_names_html(){
        if (typeof this.session=='undefined'){
            return null
        }
        
        let inputNamesString = '[Inputs]<br>';
        const inputNames = this.session.inputNames;

        for (let inputName of inputNames) {
            console.log(inputName)
            inputNamesString+=inputName+"<br>"
        }
        return inputNamesString.trim()
    }


    processText(text) {
    const x = this.intersperse(this.textToSequence(text));
    const x_phones = this.sequenceToText(x);
    const textList = [];
    for (let i = 1; i < x_phones.length; i += 2) {
    textList.push(x_phones[i]);
    }

    return {
    x: x,
    x_length: x.length,
    x_phones: x_phones,
    x_phones_label: textList.join(""),
    };
}


    basicCleaners2(text, lowercase = false) {
    if (lowercase) {
    text = text.toLowerCase();
    }
    text = text.replace(/\s+/g, " ");
    return text;
}

    textToSequence(text) {
    const sequenceList = [];
    const clean_text = this.basicCleaners2(text);
    for (let i = 0; i < clean_text.length; i++) {
    const symbol = clean_text[i];
    sequenceList.push(symbolToId[symbol]);
    }
    return sequenceList;
}

    intersperse(sequence, item = 0) {
    const sequenceList = [item];
    for (let i = 0; i < sequence.length; i++) {
    sequenceList.push(sequence[i]);
    sequenceList.push(item);
    }
    return sequenceList;
    }

    sequenceToText(sequence) {
    const textList = [];
    for (let i = 0; i < sequence.length; i++) {
    const symbol = idToSymbol[sequence[i]];
    textList.push(symbol);
    }
    return textList.join("");
}

async infer(text, temperature, speed) {
    console.log(this.session)
    const dic = this.processText(text);
console.log(`x:${dic.x.join(", ")}`);
console.log(`x_length:${dic.x_length}`);
console.log(`x_phones_label:${dic.x_phones_label}`);
    
// Prepare input tensors (assuming your ONNX Runtime library uses similar syntax)
//const x_tensor = new this.session.Tensor('long', dic.x, [1, dic.x.length]);
//const x_length_tensor = new this.session.Tensor('long', [dic.x.length], [1]);
//const scales_tensor = new this.session.Tensor('float', [temperature, speed], [2]);

const dataX = new BigInt64Array(dic.x.length)
for (let i = 0; i < dic.x.length; i++) {
    //console.log(dic.x[i])
    dataX[i] = BigInt(dic.x[i]); // Convert each number to a BigInt
    }
const data_x_length = new BigInt64Array(1)
data_x_length[0] = BigInt(dic.x_length)

//const dataX = Int32Array.from([dic.x_length])
const tensorX = new ort.Tensor('int64', dataX, [1, dic.x.length]);
// const data_x_length = Int32Array.from([dic.x_length])
const tensor_x_length = new ort.Tensor('int64', data_x_length, [1]);
const data_scale = Float32Array.from( [temperature, speed])
const tensor_scale = new ort.Tensor('float32', data_scale, [2]);


// Run inference
const output = await this.session.run({
x: tensorX,
x_lengths: tensor_x_length,
scales: tensor_scale,
});
console.log(output)
// Extract output (assuming your ONNX Runtime library uses similar syntax)
const wav_array = output.wav.data;
console.log(wav_array[0]);
console.log(wav_array.length);

const x_lengths_array = output.wav_lengths.data;
console.log(x_lengths_array.join(", "));

return wav_array;
}


}

convert to wav



function webWavPlay(f32array){
    blob = float32ArrayToWav(f32array)
    url = createObjectUrlFromBlob(blob)
    console.log(url)
    playAudioFromUrl(url)
}

function createObjectUrlFromBlob(blob) {
    const url = URL.createObjectURL(blob);
    return url;
    }

function playAudioFromUrl(url) {
    const audio = new Audio(url);
    audio.play().catch(error => console.error('Failed to play audio:', error));
    }

    
//I copied
//https://huggingface.co/spaces/k2-fsa/web-assembly-tts-sherpa-onnx-de/blob/main/app-tts.js
        // this function is copied/modified from
// https://gist.github.com/meziantou/edb7217fddfbb70e899e
function float32ArrayToWav(floatSamples, sampleRate=22050) {
        let samples = new Int16Array(floatSamples.length);
        for (let i = 0; i < samples.length; ++i) {
          let s = floatSamples[i];
          if (s >= 1)
            s = 1;
          else if (s <= -1)
            s = -1;
      
          samples[i] = s * 32767;
        }
      
        let buf = new ArrayBuffer(44 + samples.length * 2);
        var view = new DataView(buf);
      
        // http://soundfile.sapp.org/doc/WaveFormat/
        //                   F F I R
        view.setUint32(0, 0x46464952, true);               // chunkID
        view.setUint32(4, 36 + samples.length * 2, true);  // chunkSize
        //                   E V A W
        view.setUint32(8, 0x45564157, true);  // format
                                              //
        //                      t m f
        view.setUint32(12, 0x20746d66, true);          // subchunk1ID
        view.setUint32(16, 16, true);                  // subchunk1Size, 16 for PCM
        view.setUint32(20, 1, true);                   // audioFormat, 1 for PCM
        view.setUint16(22, 1, true);                   // numChannels: 1 channel
        view.setUint32(24, sampleRate, true);          // sampleRate
        view.setUint32(28, sampleRate * 2, true);      // byteRate
        view.setUint16(32, 2, true);                   // blockAlign
        view.setUint16(34, 16, true);                  // bitsPerSample
        view.setUint32(36, 0x61746164, true);          // Subchunk2ID
        view.setUint32(40, samples.length * 2, true);  // subchunk2Size
      
        let offset = 44;
        for (let i = 0; i < samples.length; ++i) {
          view.setInt16(offset, samples[i], true);
          offset += 2;
        }
      
        return new Blob([view], {type: 'audio/wav'});
      }

Audio

I cut with VAD tools and denoise with resemble-enhance