Alia-Mohammed's picture
update model card README.md
a4d9281
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: resnet-50-finetuned-brain-tumor
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9171249018067557

resnet-50-finetuned-brain-tumor

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2757
  • Accuracy: 0.9171

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.3264 1.0 30 0.5035 1.3154
1.222 2.0 60 0.6473 1.2254
1.0584 3.0 90 1.0668 0.7510
0.8977 4.0 120 0.9205 0.8060
0.724 5.0 150 0.7740 0.8456
0.6025 6.0 180 0.6009 0.8720
0.4953 7.0 210 0.5039 0.8684
0.4252 8.0 240 0.4158 0.8904
0.3677 9.0 270 0.3705 0.9038
0.3305 10.0 300 0.3300 0.9049
0.3113 11.0 330 0.3053 0.9097
0.2835 12.0 360 0.2885 0.9116
0.2614 13.0 390 0.2606 0.9297
0.2735 14.0 420 0.2767 0.9187
0.2573 15.0 450 0.2757 0.9171

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.10.0
  • Tokenizers 0.13.2