|
--- |
|
license: mit |
|
language: |
|
- en |
|
library_name: transformers |
|
tags: |
|
- ems |
|
- esm2 |
|
- biology |
|
- protein |
|
- protein language model |
|
- cafa 5 |
|
- protein function prediction |
|
datasets: |
|
- AmelieSchreiber/cafa_5 |
|
metrics: |
|
- f1 |
|
- recall |
|
- precision |
|
--- |
|
# ESM-2 for Protein Function Prediction |
|
|
|
Please also see the more recent fine-tuned model [AmelieSchreiber/esm2_t6_8M_finetuned_cafa5](https://huggingface.co/AmelieSchreiber/esm2_t6_8M_finetuned_cafa5). |
|
|
|
This model is not intended for protein function prediction, but rather as a checkpoint for further fine-tuning, especially |
|
with Low Rank Adaptation (LoRA). This is an experimental model fine-tuned from the |
|
[esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) model |
|
for multi-label classification. In particular, the model is fine-tuned on the CAFA-5 protein sequence dataset available |
|
[here](https://huggingface.co/datasets/AmelieSchreiber/cafa_5). More precisely, the `train_sequences.fasta` file is the |
|
list of protein sequences that were trained on, and the |
|
`train_terms.tsv` file contains the gene ontology protein function labels for each protein sequence. For more details on using |
|
ESM-2 models for multi-label sequence classification, [see here](https://huggingface.co/docs/transformers/model_doc/esm). |
|
Due to the potentially complicated class weighting necessary for the hierarchical ontology, further fine-tuning will be necessary. |
|
|
|
## Fine-Tuning |
|
|
|
The model was fine-tuned for 7 epochs at a learning rate of `5e-5`, and achieves the following metrics: |
|
``` |
|
Validation Loss: 0.0027, |
|
Validation Micro F1: 0.3672, |
|
Validation Macro F1: 0.9967, |
|
Validation Micro Precision: 0.6052, |
|
Validation Macro Precision: 0.9996, |
|
Validation Micro Recall: 0.2626, |
|
Validation Macro Recall: 0.9966 |
|
``` |
|
|
|
## Using the model |
|
|
|
First, download the `train_sequences.fasta` file and the `train_terms.tsv` file, and provide the local paths in the code below: |
|
|
|
```python |
|
import os |
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, EsmForSequenceClassification, AdamW |
|
from torch.nn.functional import binary_cross_entropy_with_logits |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import f1_score, precision_score, recall_score |
|
# from accelerate import Accelerator |
|
from Bio import SeqIO |
|
|
|
# Step 1: Data Preprocessing (Replace with your local paths) |
|
fasta_file = "/Users/amelieschreiber/.cursor-tutor/projects/python/cafa5/cafa-5-protein-function-prediction/Train/train_sequences.fasta" |
|
tsv_file = "/Users/amelieschreiber/.cursor-tutor/projects/python/cafa5/cafa-5-protein-function-prediction/Train/train_terms.tsv" |
|
|
|
fasta_data = {} |
|
tsv_data = {} |
|
|
|
for record in SeqIO.parse(fasta_file, "fasta"): |
|
fasta_data[record.id] = str(record.seq) |
|
|
|
with open(tsv_file, 'r') as f: |
|
for line in f: |
|
parts = line.strip().split("\t") |
|
tsv_data[parts[0]] = parts[1:] |
|
|
|
# tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D") |
|
seq_length = 1022 |
|
# tokenized_data = tokenizer(list(fasta_data.values()), padding=True, truncation=True, return_tensors="pt", max_length=seq_length) |
|
|
|
unique_terms = list(set(term for terms in tsv_data.values() for term in terms)) |
|
``` |
|
|
|
|
|
Second, downlowd the file `go-basic.obo` [from here](https://huggingface.co/datasets/AmelieSchreiber/cafa_5) |
|
and store the file locally, then provide the local path in the the code below: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, EsmForSequenceClassification |
|
from sklearn.metrics import precision_recall_fscore_support |
|
|
|
# 1. Parsing the go-basic.obo file |
|
def parse_obo_file(file_path): |
|
with open(file_path, 'r') as f: |
|
data = f.read().split("[Term]") |
|
|
|
terms = [] |
|
for entry in data[1:]: |
|
lines = entry.strip().split("\n") |
|
term = {} |
|
for line in lines: |
|
if line.startswith("id:"): |
|
term["id"] = line.split("id:")[1].strip() |
|
elif line.startswith("name:"): |
|
term["name"] = line.split("name:")[1].strip() |
|
elif line.startswith("namespace:"): |
|
term["namespace"] = line.split("namespace:")[1].strip() |
|
elif line.startswith("def:"): |
|
term["definition"] = line.split("def:")[1].split('"')[1] |
|
terms.append(term) |
|
return terms |
|
|
|
parsed_terms = parse_obo_file("go-basic.obo") # Replace `go-basic.obo` with your path |
|
|
|
# 2. Load the saved model and tokenizer |
|
model_path = "AmelieSchreiber/cafa_5_protein_function_prediction" |
|
loaded_model = EsmForSequenceClassification.from_pretrained(model_path) |
|
loaded_tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
# 3. The predict_protein_function function |
|
def predict_protein_function(sequence, model, tokenizer, go_terms): |
|
inputs = tokenizer(sequence, return_tensors="pt", padding=True, truncation=True, max_length=1022) |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
predictions = torch.sigmoid(outputs.logits) |
|
predicted_indices = torch.where(predictions > 0.05)[1].tolist() |
|
|
|
functions = [] |
|
for idx in predicted_indices: |
|
term_id = unique_terms[idx] # Use the unique_terms list from your training script |
|
for term in go_terms: |
|
if term["id"] == term_id: |
|
functions.append(term["name"]) |
|
break |
|
|
|
return functions |
|
|
|
# 4. Predicting protein function for an example sequence |
|
example_sequence = "MAYLGSLVQRRLELASGDRLEASLGVGSELDVRGDRVKAVGSLDLEEGRLEQAGVSMA" # Replace with your protein sequence |
|
predicted_functions = predict_protein_function(example_sequence, loaded_model, loaded_tokenizer, parsed_terms) |
|
print(predicted_functions) |
|
``` |