ViTForImageClassification
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the CIFAR10 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1199
- Accuracy: 0.9678
Model description
A detailed description of model architecture can be found here
Training and evaluation data
Training procedure
Straightforward tuning of all model's parameters.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2995 | 0.27 | 100 | 0.3419 | 0.9108 |
0.2289 | 0.53 | 200 | 0.2482 | 0.9288 |
0.1811 | 0.8 | 300 | 0.2139 | 0.9357 |
0.0797 | 1.07 | 400 | 0.1813 | 0.946 |
0.1128 | 1.33 | 500 | 0.1741 | 0.9452 |
0.086 | 1.6 | 600 | 0.1659 | 0.9513 |
0.0815 | 1.87 | 700 | 0.1468 | 0.9547 |
0.048 | 2.13 | 800 | 0.1393 | 0.9592 |
0.021 | 2.4 | 900 | 0.1399 | 0.9603 |
0.0271 | 2.67 | 1000 | 0.1334 | 0.9642 |
0.0231 | 2.93 | 1100 | 0.1228 | 0.9658 |
0.0101 | 3.2 | 1200 | 0.1229 | 0.9673 |
0.0041 | 3.47 | 1300 | 0.1189 | 0.9675 |
0.0043 | 3.73 | 1400 | 0.1165 | 0.9683 |
0.0067 | 4.0 | 1500 | 0.1145 | 0.9697 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.14.1
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Andron00e/ViTForImageClassification
Base model
google/vit-base-patch16-224-in21k