AnhDuc2507's picture
End of training
43a674b verified
metadata
license: cc-by-nc-4.0
base_model: nguyenvulebinh/wav2vec2-base-vietnamese-250h
tags:
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: model_weight_with_token_110
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: vi
          split: None
          args: vi
        metrics:
          - name: Wer
            type: wer
            value: 0.17328485312410297

model_weight_with_token_110

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0688
  • Wer: 0.1733

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5366 1.3928 500 0.1234 0.2107
0.4976 2.7855 1000 0.1343 0.2133
0.4734 4.1783 1500 0.1109 0.2037
0.4449 5.5710 2000 0.1111 0.2061
0.4194 6.9638 2500 0.1096 0.2024
0.3941 8.3565 3000 0.1231 0.1969
0.3767 9.7493 3500 0.1059 0.2002
0.3853 11.1421 4000 0.0998 0.1930
0.3584 12.5348 4500 0.0892 0.1905
0.3291 13.9276 5000 0.0926 0.1899
0.3279 15.3203 5500 0.0879 0.1878
0.3014 16.7131 6000 0.0831 0.1851
0.2886 18.1058 6500 0.0814 0.1857
0.2949 19.4986 7000 0.0880 0.1854
0.2661 20.8914 7500 0.0782 0.1829
0.2676 22.2841 8000 0.0789 0.1806
0.2663 23.6769 8500 0.0787 0.1805
0.2461 25.0696 9000 0.0788 0.1793
0.2484 26.4624 9500 0.0755 0.1804
0.2452 27.8552 10000 0.0715 0.1773
0.2261 29.2479 10500 0.0705 0.1764
0.2311 30.6407 11000 0.0757 0.1770
0.2195 32.0334 11500 0.0714 0.1763
0.2208 33.4262 12000 0.0697 0.1752
0.2029 34.8189 12500 0.0673 0.1744
0.2228 36.2117 13000 0.0691 0.1739
0.2056 37.6045 13500 0.0678 0.1738
0.2017 38.9972 14000 0.0688 0.1733

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1