|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: nguyenvulebinh/wav2vec2-base-vietnamese-250h |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_11_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: model_weight_with_token_110_11 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_11_0 |
|
type: common_voice_11_0 |
|
config: vi |
|
split: None |
|
args: vi |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.1738111185532485 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# model_weight_with_token_110_11 |
|
|
|
This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on the common_voice_11_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0692 |
|
- Cer: 0.0582 |
|
- Wer: 0.1738 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 40 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |
|
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| |
|
| 0.5359 | 1.3928 | 500 | 0.1281 | 0.0733 | 0.2101 | |
|
| 0.4994 | 2.7855 | 1000 | 0.1591 | 0.0731 | 0.2098 | |
|
| 0.4735 | 4.1783 | 1500 | 0.1169 | 0.0708 | 0.2022 | |
|
| 0.4432 | 5.5710 | 2000 | 0.1102 | 0.0710 | 0.2031 | |
|
| 0.4204 | 6.9638 | 2500 | 0.1127 | 0.0735 | 0.2023 | |
|
| 0.3919 | 8.3565 | 3000 | 0.1146 | 0.0699 | 0.1992 | |
|
| 0.3701 | 9.7493 | 3500 | 0.1047 | 0.0712 | 0.1993 | |
|
| 0.3826 | 11.1421 | 4000 | 0.1073 | 0.0688 | 0.1952 | |
|
| 0.3512 | 12.5348 | 4500 | 0.0898 | 0.0650 | 0.1894 | |
|
| 0.327 | 13.9276 | 5000 | 0.0931 | 0.0650 | 0.1869 | |
|
| 0.3284 | 15.3203 | 5500 | 0.1028 | 0.0672 | 0.1918 | |
|
| 0.3016 | 16.7131 | 6000 | 0.0973 | 0.0651 | 0.1875 | |
|
| 0.2893 | 18.1058 | 6500 | 0.0899 | 0.0638 | 0.1849 | |
|
| 0.292 | 19.4986 | 7000 | 0.0882 | 0.0632 | 0.1840 | |
|
| 0.2688 | 20.8914 | 7500 | 0.0808 | 0.0625 | 0.1820 | |
|
| 0.2672 | 22.2841 | 8000 | 0.0807 | 0.0620 | 0.1818 | |
|
| 0.266 | 23.6769 | 8500 | 0.0807 | 0.0621 | 0.1816 | |
|
| 0.2499 | 25.0696 | 9000 | 0.0741 | 0.0615 | 0.1787 | |
|
| 0.244 | 26.4624 | 9500 | 0.0780 | 0.0620 | 0.1803 | |
|
| 0.2403 | 27.8552 | 10000 | 0.0764 | 0.0607 | 0.1791 | |
|
| 0.2268 | 29.2479 | 10500 | 0.0750 | 0.0599 | 0.1778 | |
|
| 0.2318 | 30.6407 | 11000 | 0.0728 | 0.0600 | 0.1775 | |
|
| 0.2143 | 32.0334 | 11500 | 0.0723 | 0.0592 | 0.1757 | |
|
| 0.2193 | 33.4262 | 12000 | 0.0699 | 0.0591 | 0.1749 | |
|
| 0.1992 | 34.8189 | 12500 | 0.0717 | 0.0585 | 0.1748 | |
|
| 0.2238 | 36.2117 | 13000 | 0.0692 | 0.0587 | 0.1744 | |
|
| 0.2074 | 37.6045 | 13500 | 0.0696 | 0.0581 | 0.1735 | |
|
| 0.1984 | 38.9972 | 14000 | 0.0692 | 0.0582 | 0.1738 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|