metadata
license: apache-2.0
library_name: transformers
base_model:
- rombodawg/Rombos-LLM-V2.6-Qwen-14b
quantized_by: Apel-sin
model-index:
- name: Rombos-LLM-V2.6-Qwen-14b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 52.14
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.6-Qwen-14b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 49.22
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.6-Qwen-14b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 28.85
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.6-Qwen-14b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 17
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.6-Qwen-14b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 19.26
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.6-Qwen-14b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 48.85
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.6-Qwen-14b
name: Open LLM Leaderboard
Rombos-LLM-V2.5-Qwen-14b
Rombos-LLM-V2.6-Qwen-14b is the upgraded version of "rombodawg/Rombos-LLM-V2.5-Qwen-14b". The magic I performed to make this model better than it already was is only known to the Deepest state, dankest memers and God himself, so dont ask 😉. But it does perform a decent bit better than version 2.5 from my hand testing. Benchmarks will come later.
Check out the Continuous Finetuning method that I apply to all my models bellow:
Quants:
https://huggingface.co/rombodawg/Rombos-LLM-V2.6-Qwen-14b-Q8_0-GGUF
https://huggingface.co/rombodawg/Rombos-LLM-V2.6-Qwen-14b-Q5_K_M-GGUF
https://huggingface.co/bartowski/Rombos-LLM-V2.6-Qwen-14b-GGUF
Benchmarks:
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 35.89 |
IFEval (0-Shot) | 52.14 |
BBH (3-Shot) | 49.22 |
MATH Lvl 5 (4-Shot) | 28.85 |
GPQA (0-shot) | 17.00 |
MuSR (0-shot) | 19.26 |
MMLU-PRO (5-shot) | 48.85 |