Nikita Davidchuk's picture

Nikita Davidchuk

Ar4ikov

AI & ML interests

nlp, web, opensource, transformers, asr, ser, tts, cv

Recent Activity

reacted to suayptalha's post with ❤️ 7 days ago
🚀 Introducing 𝐅𝐢𝐫𝐬𝐭 𝐇𝐮𝐠𝐠𝐢𝐧𝐠 𝐅𝐚𝐜𝐞 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐦𝐢𝐧𝐆𝐑𝐔 𝐌𝐨𝐝𝐞𝐥𝐬 from the paper 𝐖𝐞𝐫𝐞 𝐑𝐍𝐍𝐬 𝐀𝐥𝐥 𝐖𝐞 𝐍𝐞𝐞𝐝𝐞𝐝? 🖥 I have integrated 𝐧𝐞𝐱𝐭-𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝐑𝐍𝐍𝐬, specifically minGRU, which offer faster performance compared to Transformer architectures, into HuggingFace. This allows users to leverage the lighter and more efficient minGRU models with the "𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫𝐬" 𝐥𝐢𝐛𝐫𝐚𝐫𝐲 for both usage and training. 💻 I integrated two main tasks: 𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 and 𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐂𝐚𝐮𝐬𝐚𝐥𝐋𝐌. 𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧: You can use this class for 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞 𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 tasks. I also trained a Sentiment Analysis model with stanfordnlp/imdb dataset. 𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐂𝐚𝐮𝐬𝐚𝐥𝐋𝐌: You can use this class for 𝐂𝐚𝐮𝐬𝐚𝐥 𝐋𝐚𝐧𝐠𝐮𝐚𝐠𝐞 𝐌𝐨𝐝𝐞𝐥 tasks such as GPT, Llama. I also trained an example model with roneneldan/TinyStories dataset. You can fine-tune and use it! 🔗 𝐋𝐢𝐧𝐤𝐬: Models: https://huggingface.co/collections/suayptalha/mingru-676fe8d90760d01b7955d7ab GitHub: https://github.com/suayptalha/minGRU-hf LinkedIn Post: https://www.linkedin.com/posts/suayp-talha-kocabay_mingru-a-suayptalha-collection-activity-7278755484172439552-wNY1 📰 𝐂𝐫𝐞𝐝𝐢𝐭𝐬: Paper Link: https://arxiv.org/abs/2410.01201 I am thankful to Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio and Hossein Hajimirsadeghi for their papers.
liked a model 10 days ago
answerdotai/ModernBERT-base
liked a model 10 days ago
mlx-community/whisper-large-v3-turbo-q4
View all activity

Organizations

Aniemore's profile picture CVCODE's profile picture Hugging Face Discord Community's profile picture Gendalf.AI's profile picture

Ar4ikov's activity

reacted to suayptalha's post with ❤️ 7 days ago
view post
Post
1785
🚀 Introducing 𝐅𝐢𝐫𝐬𝐭 𝐇𝐮𝐠𝐠𝐢𝐧𝐠 𝐅𝐚𝐜𝐞 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐦𝐢𝐧𝐆𝐑𝐔 𝐌𝐨𝐝𝐞𝐥𝐬 from the paper 𝐖𝐞𝐫𝐞 𝐑𝐍𝐍𝐬 𝐀𝐥𝐥 𝐖𝐞 𝐍𝐞𝐞𝐝𝐞𝐝?

🖥 I have integrated 𝐧𝐞𝐱𝐭-𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝐑𝐍𝐍𝐬, specifically minGRU, which offer faster performance compared to Transformer architectures, into HuggingFace. This allows users to leverage the lighter and more efficient minGRU models with the "𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫𝐬" 𝐥𝐢𝐛𝐫𝐚𝐫𝐲 for both usage and training.

💻 I integrated two main tasks: 𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 and 𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐂𝐚𝐮𝐬𝐚𝐥𝐋𝐌.

𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧:
You can use this class for 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞 𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 tasks. I also trained a Sentiment Analysis model with stanfordnlp/imdb dataset.

𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐂𝐚𝐮𝐬𝐚𝐥𝐋𝐌:
You can use this class for 𝐂𝐚𝐮𝐬𝐚𝐥 𝐋𝐚𝐧𝐠𝐮𝐚𝐠𝐞 𝐌𝐨𝐝𝐞𝐥 tasks such as GPT, Llama. I also trained an example model with roneneldan/TinyStories dataset. You can fine-tune and use it!

🔗 𝐋𝐢𝐧𝐤𝐬:
Models: suayptalha/mingru-676fe8d90760d01b7955d7ab
GitHub: https://github.com/suayptalha/minGRU-hf
LinkedIn Post: https://www.linkedin.com/posts/suayp-talha-kocabay_mingru-a-suayptalha-collection-activity-7278755484172439552-wNY1

📰 𝐂𝐫𝐞𝐝𝐢𝐭𝐬:
Paper Link: https://arxiv.org/abs/2410.01201

I am thankful to Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio and Hossein Hajimirsadeghi for their papers.
New activity in Aniemore/hubert-emotion-russian-resd about 1 month ago
liked a Space about 1 month ago
reacted to m-ric's post with ❤️ about 1 month ago
view post
Post
1475
𝗦𝗵𝗼𝘄𝗨𝗜: 𝗮 𝘀𝗺𝗮𝗹𝗹 𝗲𝗻𝗱-𝘁𝗼-𝗲𝗻𝗱 𝗮𝗴𝗲𝗻𝘁 𝘁𝗵𝗮𝘁 𝗰𝗮𝗻 𝗻𝗮𝘃𝗶𝗴𝗮𝘁𝗲 𝗮𝗻𝘆 𝗨𝗜 𝗮𝗻𝗱 𝗼𝘂𝘁𝗽𝗲𝗿𝗳𝗼𝗿𝗺𝘀 𝗺𝘂𝗰𝗵 𝗯𝗶𝗴𝗴𝗲𝗿 𝘀𝘆𝘀𝘁𝗲𝗺𝘀! 📲

A team from NUS and Microsoft just released an agent that can act on any UI (Desktop, Android, Web) without needing additional text information. It works extremely well : they applied their method on a tiny Qwen2-VL-2B, and they managed to beat methods that use either much more powerful vision models (like GPT-4V) without using any additional info (e.g. leveraging the DOM of a webpage) like previous methods did ! 👏👏

They started from the idea that most existing methods rely heavily on text, which makes them less generalizable, while letting aside rich UI structure that user actually rely on when navigating this interfaces.

⚙️ They put several good ideas to work:

💡 Simplify screenshots to the max:
They prune a lot the heavy visual content of UI screenshots, by removing cloned image patches (like any vast patch of the same color will be reduced to a small patch, while maintaining positional embeddings), then group patches from the same GUI elements together to simplify even further

💡 Build a truly generalist dataset:
To train a general UI agent, you need trajectories from each possible UI, and express them in a common language. Authors merge datasets like OmniAct for Desktop, Mind2Web for websites, AMEX for Android trajectories to create a high-quality and diverse dataset.

➡️ Nice results ensued:
They fine-tune a tiny Qwen-2-VL-2B on their method, and it reaches SOTA on several task (element identification, web navigation), even beating methods that either use additional info from the DOM or use much bigger VLMS like GPT-4v! 🏆

And performance could certainly jump with a slightly bigger vision model. Let's hope the community builds this soon! 🚀

Paper added to my "Agents" collection 👉 m-ric/agents-65ba776fbd9e29f771c07d4e