|
--- |
|
license: mit |
|
base_model: pyannote/segmentation-3.0 |
|
tags: |
|
- speaker-diarization |
|
- speaker-segmentation |
|
- generated_from_trainer |
|
datasets: |
|
- ArtFair/diarizers_dataset_70-15-15 |
|
model-index: |
|
- name: fine_tuned_segmentation-3.0_1e-3_128_pth |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine_tuned_segmentation-3.0_1e-3_128_pth |
|
|
|
This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the ArtFair/diarizers_dataset_70-15-15 default dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3620 |
|
- Der: 0.2625 |
|
- False Alarm: 0.1458 |
|
- Missed Detection: 0.0926 |
|
- Confusion: 0.0241 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| |
|
| 0.426 | 1.0 | 233 | 0.3954 | 0.2915 | 0.1834 | 0.0807 | 0.0274 | |
|
| 0.3974 | 2.0 | 466 | 0.3667 | 0.2668 | 0.1391 | 0.1032 | 0.0246 | |
|
| 0.3772 | 3.0 | 699 | 0.3675 | 0.2672 | 0.1552 | 0.0874 | 0.0246 | |
|
| 0.3618 | 4.0 | 932 | 0.3629 | 0.2641 | 0.1498 | 0.0899 | 0.0243 | |
|
| 0.3622 | 5.0 | 1165 | 0.3620 | 0.2625 | 0.1458 | 0.0926 | 0.0241 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|