vivit-b-16x2-kinetics400-finetuned-cricket_shot_detection_14

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0573
  • Accuracy: 0.6316
  • F1: 0.6559
  • Recall: 0.6316
  • Precision: 0.7018

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • training_steps: 576

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
1.6885 0.1267 73 1.7082 0.1579 0.1853 0.1579 0.4684
1.2348 1.1267 146 1.3958 0.4211 0.4354 0.4211 0.5088
0.8271 2.1267 219 1.1646 0.4737 0.5416 0.4737 0.6754
0.688 3.1267 292 1.0573 0.6316 0.6559 0.6316 0.7018
0.6263 4.1267 365 1.0327 0.5789 0.5982 0.5789 0.6579
0.4942 5.1267 438 1.0107 0.6316 0.6333 0.6316 0.6535
0.3217 6.1267 511 1.0271 0.5789 0.5982 0.5789 0.6579

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
88.7M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Asadali12/vivit-b-16x2-kinetics400-finetuned-cricket_shot_detection_14

Finetuned
(54)
this model