swiftformer-xs-DMAE / README.md
Augusto777's picture
End of training
33ea907 verified
|
raw
history blame
4.22 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-DMAE
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.10869565217391304

swiftformer-xs-DMAE

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 125514790469632.0
  • Accuracy: 0.1087

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 125514790469632.0 0.1087
No log 2.0 7 125514790469632.0 0.1087
125815215043379.2 2.86 10 125514790469632.0 0.1087
125815215043379.2 4.0 14 125514790469632.0 0.1087
125815215043379.2 4.86 17 125514790469632.0 0.1087
125111108842291.2 6.0 21 125514790469632.0 0.1087
125111108842291.2 6.86 24 125514790469632.0 0.1087
125111108842291.2 8.0 28 125514790469632.0 0.1087
123174816789299.2 8.86 31 125514790469632.0 0.1087
123174816789299.2 10.0 35 125514790469632.0 0.1087
123174816789299.2 10.86 38 125514790469632.0 0.1087
127795517089382.4 12.0 42 125514790469632.0 0.1087
127795517089382.4 12.86 45 125514790469632.0 0.1087
127795517089382.4 14.0 49 125514790469632.0 0.1087
123834899575603.2 14.86 52 125514790469632.0 0.1087
123834899575603.2 16.0 56 125514790469632.0 0.1087
123834899575603.2 16.86 59 125514790469632.0 0.1087
124803052312985.6 18.0 63 125514790469632.0 0.1087
124803052312985.6 18.86 66 125514790469632.0 0.1087
125771218472140.8 20.0 70 125514790469632.0 0.1087
125771218472140.8 20.86 73 125514790469632.0 0.1087
125771218472140.8 22.0 77 125514790469632.0 0.1087
126299284701184.0 22.86 80 125514790469632.0 0.1087
126299284701184.0 24.0 84 125514790469632.0 0.1087
126299284701184.0 24.86 87 125514790469632.0 0.1087
126299271279411.2 26.0 91 125514790469632.0 0.1087
126299271279411.2 26.86 94 125514790469632.0 0.1087
126299271279411.2 28.0 98 125514790469632.0 0.1087
124362979226419.2 28.86 101 125514790469632.0 0.1087
124362979226419.2 30.0 105 125514790469632.0 0.1087
124362979226419.2 30.86 108 125514790469632.0 0.1087
126035251586662.4 32.0 112 125514790469632.0 0.1087
126035251586662.4 32.86 115 125514790469632.0 0.1087
126035251586662.4 34.0 119 125514790469632.0 0.1087
125815215043379.2 34.29 120 125514790469632.0 0.1087

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0