swiftformer-xs-DMAE / README.md
Augusto777's picture
End of training
79c5d5d verified
|
raw
history blame
3.99 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-DMAE
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.10869565217391304

swiftformer-xs-DMAE

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 113.8184
  • Accuracy: 0.1087

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 113.8184 0.1087
No log 2.0 7 113.8094 0.1087
114.0867 2.86 10 113.7944 0.1087
114.0867 4.0 14 113.7881 0.1087
114.0867 4.86 17 113.7100 0.1087
113.3425 6.0 21 113.5884 0.1087
113.3425 6.86 24 113.4998 0.1087
113.3425 8.0 28 113.0578 0.1087
111.228 8.86 31 112.8053 0.1087
111.228 10.0 35 112.5202 0.1087
111.228 10.86 38 112.5811 0.1087
114.9647 12.0 42 112.6090 0.1087
114.9647 12.86 45 112.4973 0.1087
114.9647 14.0 49 111.9761 0.1087
110.7738 14.86 52 111.8117 0.1087
110.7738 16.0 56 111.6589 0.1087
110.7738 16.86 59 111.5367 0.1087
111.0505 18.0 63 111.7016 0.1087
111.0505 18.86 66 111.9068 0.1087
111.4545 20.0 70 111.6203 0.1087
111.4545 20.86 73 111.1266 0.1087
111.4545 22.0 77 110.2879 0.1087
111.2779 22.86 80 109.8523 0.1087
111.2779 24.0 84 109.5283 0.1087
111.2779 24.86 87 109.9590 0.1087
110.5166 26.0 91 109.9752 0.1087
110.5166 26.86 94 109.5435 0.1087
110.5166 28.0 98 109.5712 0.1087
108.66 28.86 101 108.8924 0.1087
108.66 30.0 105 108.3990 0.1087
108.66 30.86 108 108.7050 0.1087
109.688 32.0 112 108.7237 0.1087
109.688 32.86 115 109.0679 0.1087
109.688 34.0 119 108.5750 0.1087
109.4549 34.29 120 108.5167 0.1087

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0