swiftformer-xs-DMAE / README.md
Augusto777's picture
End of training
ae405ff verified
|
raw
history blame
3.98 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-DMAE
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.717391304347826

swiftformer-xs-DMAE

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8398
  • Accuracy: 0.7174

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 1.3706 0.5217
No log 2.0 7 1.1520 0.6304
1.2948 2.86 10 1.2934 0.6087
1.2948 4.0 14 1.2139 0.6304
1.2948 4.86 17 2.5946 0.5217
1.1888 6.0 21 1.1217 0.4783
1.1888 6.86 24 1.1050 0.5870
1.1888 8.0 28 1.6684 0.3913
1.1236 8.86 31 0.8968 0.6739
1.1236 10.0 35 1.2404 0.5652
1.1236 10.86 38 0.9957 0.6087
1.0477 12.0 42 1.1694 0.5
1.0477 12.86 45 0.9247 0.6957
1.0477 14.0 49 0.9464 0.6304
1.0264 14.86 52 0.8716 0.6087
1.0264 16.0 56 0.8909 0.6739
1.0264 16.86 59 0.8654 0.6739
0.909 18.0 63 0.9091 0.6087
0.909 18.86 66 0.8398 0.7174
0.8914 20.0 70 0.9393 0.6522
0.8914 20.86 73 0.9567 0.6739
0.8914 22.0 77 0.9479 0.6087
0.8573 22.86 80 0.9308 0.6739
0.8573 24.0 84 0.8986 0.6739
0.8573 24.86 87 0.9345 0.6739
0.8249 26.0 91 0.9843 0.6087
0.8249 26.86 94 0.9945 0.6087
0.8249 28.0 98 0.9493 0.5870
0.8307 28.86 101 0.9074 0.6739
0.8307 30.0 105 0.9497 0.6304
0.8307 30.86 108 0.9572 0.6087
0.7781 32.0 112 0.9732 0.6087
0.7781 32.86 115 0.9418 0.6304
0.7781 34.0 119 0.9533 0.6087
0.8104 34.29 120 0.9481 0.6087

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0