swiftformer-xs-DMAE / README.md
Augusto777's picture
Training in progress, epoch 0
af27c00 verified
|
raw
history blame
3.99 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-DMAE
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.43478260869565216

swiftformer-xs-DMAE

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2103
  • Accuracy: 0.4348

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 113.8089 0.1087
No log 2.0 7 719662.6875 0.1087
113.1437 2.86 10 3930.8594 0.1087
113.1437 4.0 14 57703.1484 0.1087
113.1437 4.86 17 1127.0548 0.3261
96.1157 6.0 21 131.2882 0.1087
96.1157 6.86 24 305.9370 0.0870
96.1157 8.0 28 209.0138 0.1087
38.8121 8.86 31 30.6911 0.1304
38.8121 10.0 35 7.7503 0.4565
38.8121 10.86 38 16.1361 0.3261
10.6492 12.0 42 7.8875 0.4565
10.6492 12.86 45 4.8321 0.4565
10.6492 14.0 49 8.2543 0.4565
3.6688 14.86 52 3.3603 0.4565
3.6688 16.0 56 3.9023 0.4565
3.6688 16.86 59 3.6221 0.4565
1.5847 18.0 63 3.2802 0.4565
1.5847 18.86 66 1.8639 0.4565
1.5235 20.0 70 2.5394 0.4565
1.5235 20.86 73 1.4062 0.4783
1.5235 22.0 77 1.4145 0.3913
1.3634 22.86 80 1.3275 0.4565
1.3634 24.0 84 1.3357 0.3478
1.3634 24.86 87 1.4708 0.4565
1.2807 26.0 91 1.2909 0.4565
1.2807 26.86 94 1.3445 0.4565
1.2807 28.0 98 1.2974 0.3696
1.2625 28.86 101 1.3482 0.4565
1.2625 30.0 105 1.2866 0.3478
1.2625 30.86 108 1.2364 0.4783
1.2472 32.0 112 1.2389 0.4130
1.2472 32.86 115 1.2459 0.3478
1.2472 34.0 119 1.2090 0.4348
1.2117 34.29 120 1.2103 0.4348

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0