swiftformer-xs-DMAE / README.md
Augusto777's picture
End of training
d3987ef verified
|
raw
history blame
3.96 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-DMAE
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.10869565217391304

swiftformer-xs-DMAE

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 113.8668
  • Accuracy: 0.1087

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 113.8668 0.1087
No log 2.0 7 113.8652 0.1087
114.139 2.86 10 113.8636 0.1087
114.139 4.0 14 113.8630 0.1087
114.139 4.86 17 113.8617 0.1087
113.4957 6.0 21 113.8592 0.1087
113.4957 6.86 24 113.8579 0.1087
113.4957 8.0 28 113.8578 0.1087
111.7345 8.86 31 113.8550 0.1087
111.7345 10.0 35 113.8531 0.1087
111.7345 10.86 38 113.8520 0.1087
115.9214 12.0 42 113.8497 0.1087
115.9214 12.86 45 113.8484 0.1087
115.9214 14.0 49 113.8455 0.1087
112.3215 14.86 52 113.8392 0.1087
112.3215 16.0 56 113.8351 0.1087
112.3215 16.86 59 113.8354 0.1087
113.1908 18.0 63 113.8316 0.1087
113.1908 18.86 66 113.8295 0.1087
114.062 20.0 70 113.8284 0.1087
114.062 20.86 73 113.8253 0.1087
114.062 22.0 77 113.8235 0.1087
114.5312 22.86 80 113.8207 0.1087
114.5312 24.0 84 113.8126 0.1087
114.5312 24.86 87 113.8100 0.1087
114.5216 26.0 91 113.8053 0.1087
114.5216 26.86 94 113.8032 0.1087
114.5216 28.0 98 113.8035 0.1087
112.7612 28.86 101 113.7992 0.1087
112.7612 30.0 105 113.7939 0.1087
112.7612 30.86 108 113.7967 0.1087
114.2748 32.0 112 113.7973 0.1087
114.2748 32.86 115 113.7971 0.1087
114.2748 34.0 119 113.7908 0.1087
114.0708 34.29 120 113.7932 0.1087

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0