swiftformer-xs-DMAE / README.md
Augusto777's picture
End of training
1903b7f verified
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-DMAE
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7608695652173914

swiftformer-xs-DMAE

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7654
  • Accuracy: 0.7609

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 1.3706 0.5435
No log 2.0 7 1.1672 0.6304
1.2937 2.86 10 1.2248 0.6087
1.2937 4.0 14 2.6986 0.3478
1.2937 4.86 17 2.6008 0.4565
1.2355 6.0 21 1.8900 0.4130
1.2355 6.86 24 1.5958 0.5
1.2355 8.0 28 1.3847 0.5652
1.1548 8.86 31 0.8762 0.7174
1.1548 10.0 35 1.0871 0.5435
1.1548 10.86 38 0.9779 0.5435
1.0561 12.0 42 1.2454 0.5435
1.0561 12.86 45 1.2277 0.5652
1.0561 14.0 49 0.9527 0.6087
1.0546 14.86 52 0.8797 0.6304
1.0546 16.0 56 0.9479 0.6304
1.0546 16.86 59 0.8696 0.6739
0.9493 18.0 63 0.9348 0.6522
0.9493 18.86 66 0.9890 0.5435
0.9354 20.0 70 0.9073 0.5870
0.9354 20.86 73 0.8763 0.6304
0.9354 22.0 77 0.9592 0.6522
0.8791 22.86 80 0.8940 0.6522
0.8791 24.0 84 0.8165 0.6957
0.8791 24.86 87 0.8249 0.6957
0.8017 26.0 91 0.8946 0.6739
0.8017 26.86 94 0.8210 0.6957
0.8017 28.0 98 0.7654 0.7609
0.8532 28.86 101 0.7492 0.7391
0.8532 30.0 105 0.7725 0.6957
0.8532 30.86 108 0.7932 0.7174
0.8205 32.0 112 0.8129 0.7391
0.8205 32.86 115 0.8089 0.6957
0.8205 34.0 119 0.8151 0.6957
0.8112 34.29 120 0.8074 0.6957

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0