swiftformer-xs-RD / README.md
Augusto777's picture
End of training
90c5b5d verified
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-RD
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8618181818181818

swiftformer-xs-RD

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4005
  • Accuracy: 0.8618

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5571 0.99 40 1.5191 0.5182
0.979 1.99 80 0.8953 0.7091
0.8343 2.98 120 0.7520 0.7273
0.7755 4.0 161 0.7223 0.7527
0.7064 4.99 201 0.6760 0.74
0.6296 5.99 241 0.5624 0.8018
0.6387 6.98 281 0.5362 0.8073
0.5793 8.0 322 0.5242 0.7964
0.5723 8.99 362 0.4544 0.8309
0.5897 9.99 402 0.4510 0.8273
0.5443 10.98 442 0.4685 0.8055
0.4959 12.0 483 0.4248 0.8255
0.4743 12.99 523 0.4308 0.8309
0.4679 13.99 563 0.3999 0.84
0.4997 14.98 603 0.4151 0.8382
0.4602 16.0 644 0.4112 0.8218
0.4459 16.99 684 0.4196 0.8345
0.4668 17.99 724 0.4042 0.8291
0.41 18.98 764 0.4112 0.8436
0.4349 20.0 805 0.4120 0.8418
0.4558 20.99 845 0.4554 0.8218
0.3952 21.99 885 0.3775 0.8509
0.3395 22.98 925 0.4027 0.84
0.3525 24.0 966 0.3957 0.8509
0.3497 24.99 1006 0.4020 0.8527
0.3625 25.99 1046 0.3910 0.8564
0.3008 26.98 1086 0.3790 0.8582
0.2907 28.0 1127 0.3831 0.8564
0.3165 28.99 1167 0.4005 0.8618
0.3231 29.99 1207 0.4512 0.8327
0.2819 30.98 1247 0.4228 0.8455
0.2704 32.0 1288 0.4074 0.86
0.2429 32.99 1328 0.4405 0.8545
0.2421 33.99 1368 0.4337 0.8527
0.3039 34.98 1408 0.4628 0.8473
0.2677 36.0 1449 0.4411 0.8545
0.2171 36.99 1489 0.4755 0.8618
0.2268 37.99 1529 0.4506 0.86
0.2378 38.98 1569 0.4633 0.8527
0.2021 39.75 1600 0.4492 0.8564

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0