metadata
base_model: MBZUAI/swiftformer-xs
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swiftformer-xs-RD
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8618181818181818
swiftformer-xs-RD
This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4005
- Accuracy: 0.8618
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.5571 | 0.99 | 40 | 1.5191 | 0.5182 |
0.979 | 1.99 | 80 | 0.8953 | 0.7091 |
0.8343 | 2.98 | 120 | 0.7520 | 0.7273 |
0.7755 | 4.0 | 161 | 0.7223 | 0.7527 |
0.7064 | 4.99 | 201 | 0.6760 | 0.74 |
0.6296 | 5.99 | 241 | 0.5624 | 0.8018 |
0.6387 | 6.98 | 281 | 0.5362 | 0.8073 |
0.5793 | 8.0 | 322 | 0.5242 | 0.7964 |
0.5723 | 8.99 | 362 | 0.4544 | 0.8309 |
0.5897 | 9.99 | 402 | 0.4510 | 0.8273 |
0.5443 | 10.98 | 442 | 0.4685 | 0.8055 |
0.4959 | 12.0 | 483 | 0.4248 | 0.8255 |
0.4743 | 12.99 | 523 | 0.4308 | 0.8309 |
0.4679 | 13.99 | 563 | 0.3999 | 0.84 |
0.4997 | 14.98 | 603 | 0.4151 | 0.8382 |
0.4602 | 16.0 | 644 | 0.4112 | 0.8218 |
0.4459 | 16.99 | 684 | 0.4196 | 0.8345 |
0.4668 | 17.99 | 724 | 0.4042 | 0.8291 |
0.41 | 18.98 | 764 | 0.4112 | 0.8436 |
0.4349 | 20.0 | 805 | 0.4120 | 0.8418 |
0.4558 | 20.99 | 845 | 0.4554 | 0.8218 |
0.3952 | 21.99 | 885 | 0.3775 | 0.8509 |
0.3395 | 22.98 | 925 | 0.4027 | 0.84 |
0.3525 | 24.0 | 966 | 0.3957 | 0.8509 |
0.3497 | 24.99 | 1006 | 0.4020 | 0.8527 |
0.3625 | 25.99 | 1046 | 0.3910 | 0.8564 |
0.3008 | 26.98 | 1086 | 0.3790 | 0.8582 |
0.2907 | 28.0 | 1127 | 0.3831 | 0.8564 |
0.3165 | 28.99 | 1167 | 0.4005 | 0.8618 |
0.3231 | 29.99 | 1207 | 0.4512 | 0.8327 |
0.2819 | 30.98 | 1247 | 0.4228 | 0.8455 |
0.2704 | 32.0 | 1288 | 0.4074 | 0.86 |
0.2429 | 32.99 | 1328 | 0.4405 | 0.8545 |
0.2421 | 33.99 | 1368 | 0.4337 | 0.8527 |
0.3039 | 34.98 | 1408 | 0.4628 | 0.8473 |
0.2677 | 36.0 | 1449 | 0.4411 | 0.8545 |
0.2171 | 36.99 | 1489 | 0.4755 | 0.8618 |
0.2268 | 37.99 | 1529 | 0.4506 | 0.86 |
0.2378 | 38.98 | 1569 | 0.4633 | 0.8527 |
0.2021 | 39.75 | 1600 | 0.4492 | 0.8564 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0