swiftformer-xs-RH / README.md
Augusto777's picture
End of training
42abd47 verified
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-RH
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8598130841121495

swiftformer-xs-RH

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4150
  • Accuracy: 0.8598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 8 0.6926 0.6262
0.693 2.0 16 0.6873 0.6822
0.6899 3.0 24 0.6694 0.6729
0.6732 4.0 32 0.6146 0.7290
0.6256 5.0 40 0.7084 0.4953
0.6256 6.0 48 0.6591 0.6355
0.5796 7.0 56 0.5670 0.7383
0.5253 8.0 64 0.5351 0.7196
0.4713 9.0 72 0.4614 0.8411
0.441 10.0 80 0.5826 0.7570
0.441 11.0 88 0.4679 0.7850
0.3803 12.0 96 0.4517 0.8411
0.3513 13.0 104 0.4571 0.7757
0.3043 14.0 112 0.4755 0.8037
0.3172 15.0 120 0.5953 0.7944
0.3172 16.0 128 0.5904 0.7383
0.365 17.0 136 0.4213 0.8411
0.279 18.0 144 0.4572 0.8037
0.3092 19.0 152 0.4181 0.8131
0.2667 20.0 160 0.4117 0.8224
0.2667 21.0 168 0.4349 0.8037
0.261 22.0 176 0.4185 0.8037
0.2638 23.0 184 0.3989 0.8131
0.2269 24.0 192 0.3971 0.8318
0.2431 25.0 200 0.4784 0.8037
0.2431 26.0 208 0.3763 0.8318
0.2111 27.0 216 0.4088 0.8411
0.2087 28.0 224 0.4024 0.8318
0.1645 29.0 232 0.4161 0.8318
0.2137 30.0 240 0.4128 0.8131
0.2137 31.0 248 0.4004 0.8411
0.2207 32.0 256 0.4206 0.8224
0.1544 33.0 264 0.3622 0.8505
0.197 34.0 272 0.4356 0.8411
0.2168 35.0 280 0.4067 0.8318
0.2168 36.0 288 0.3809 0.8224
0.1631 37.0 296 0.3865 0.8411
0.1913 38.0 304 0.4008 0.8318
0.1595 39.0 312 0.3752 0.8318
0.1694 40.0 320 0.4150 0.8598

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0