metadata
license: apache-2.0
language: ar
datasets:
- AymanMansour/SDN-Dialect-Dataset
- arbml/sudanese_dialect_speech
- arabic_speech_corpus
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-small
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: SDN-Dialect-Dataset
type: AymanMansour/SDN-Dialect-Dataset
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 56.3216
openai/whisper-small
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5091
- Wer: 56.3216
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0157 | 13.0 | 1000 | 1.1631 | 65.9101 |
0.0025 | 26.0 | 2000 | 1.3416 | 58.5066 |
0.0009 | 39.01 | 3000 | 1.4238 | 56.6398 |
0.0004 | 52.01 | 4000 | 1.4800 | 56.3004 |
0.0002 | 65.01 | 5000 | 1.5091 | 56.3216 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2