BAAI
/

Model Card

Logo

πŸ“– Technical report | 🏠 Code | 🐰 Demo

This is Bunny-v1.1-4B.

Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Phi-3-mini, Llama-3-8B, Phi-1.5, StableLM-2 and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source.

We provide Bunny-v1.1-4B, which is built upon SigLIP and Phi-3-mini-4k-instruct with S 2^{2}-Wrapper, supporting 1152x1152 resolution. More details about this model can be found in GitHub.

comparison

Quickstart

Here we show a code snippet to show you how to use the model with transformers.

Before running the snippet, you need to install the following dependencies:

pip install torch transformers accelerate pillow

If the CUDA memory is enough, it would be faster to execute this snippet by setting CUDA_VISIBLE_DEVICES=0.

Users especially those in Chinese mainland may want to refer to a HuggingFace mirror site.

import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings

# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')

# set device
device = 'cuda'  # or cpu
torch.set_default_device(device)

# create model
model = AutoModelForCausalLM.from_pretrained(
    'BAAI/Bunny-v1_1-4B',
    torch_dtype=torch.float16, # float32 for cpu
    device_map='auto',
    trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
    'BAAI/Bunny-v1_1-4B',
    trust_remote_code=True)

# text prompt
prompt = 'Why is the image funny?'
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:"
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1][1:], dtype=torch.long).unsqueeze(0).to(device)

# image, sample images can be found in images folder
image = Image.open('example_2.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device)

# generate
output_ids = model.generate(
    input_ids,
    images=image_tensor,
    max_new_tokens=100,
    use_cache=True,
    repetition_penalty=1.0 # increase this to avoid chattering
)[0]

print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
Downloads last month
99
Safetensors
Model size
4.27B params
Tensor type
FP16
Β·
Inference Examples
Inference API (serverless) has been turned off for this model.

Space using BAAI/Bunny-v1_1-4B 1