BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
note that training still WIP
This model is a fine-tuned version of BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v12-minipile on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.5937
- Accuracy: 0.4948
Training and evaluation data
KI dataset
hf-causal-experimental (pretrained=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI,revision=main,trust_remote_code=True,dtype='float'), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_easy | 0 | acc | 0.4322 | ± | 0.0102 |
acc_norm | 0.3960 | ± | 0.0100 | ||
boolq | 1 | acc | 0.6196 | ± | 0.0085 |
lambada_openai | 0 | ppl | 61.6595 | ± | 2.4362 |
acc | 0.2779 | ± | 0.0062 | ||
openbookqa | 0 | acc | 0.1540 | ± | 0.0162 |
acc_norm | 0.2840 | ± | 0.0202 | ||
piqa | 0 | acc | 0.6028 | ± | 0.0114 |
acc_norm | 0.6028 | ± | 0.0114 | ||
winogrande | 0 | acc | 0.5193 | ± | 0.0140 |
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 8
- eval_batch_size: 4
- seed: 2280
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.5744 | 0.08 | 200 | 2.7138 | 0.4776 |
2.5387 | 0.16 | 400 | 2.6713 | 0.4836 |
2.4718 | 0.23 | 600 | 2.6462 | 0.4873 |
2.4681 | 0.31 | 800 | 2.6328 | 0.4892 |
2.5351 | 0.39 | 1000 | 2.6227 | 0.4908 |
2.5316 | 0.47 | 1200 | 2.6159 | 0.4914 |
2.527 | 0.54 | 1400 | 2.6103 | 0.4921 |
2.4838 | 0.62 | 1600 | 2.6058 | 0.4930 |
2.4483 | 0.7 | 1800 | 2.6024 | 0.4934 |
2.426 | 0.78 | 2000 | 2.5998 | 0.4937 |
2.4685 | 0.86 | 2200 | 2.5961 | 0.4944 |
2.4473 | 0.93 | 2400 | 2.5937 | 0.4948 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0
- Datasets 2.15.0
- Tokenizers 0.15.0
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 29.23 |
AI2 Reasoning Challenge (25-Shot) | 23.81 |
HellaSwag (10-Shot) | 29.39 |
MMLU (5-Shot) | 25.37 |
TruthfulQA (0-shot) | 44.77 |
Winogrande (5-shot) | 51.14 |
GSM8k (5-shot) | 0.91 |
- Downloads last month
- 32
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard23.810
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard29.390
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard25.370
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard44.770
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard51.140
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard0.910