metadata
language:
- en
license: apache-2.0
tags:
- edu
- continual pretraining
base_model: BEE-spoke-data/smol_llama-220M-GQA
datasets:
- HuggingFaceFW/fineweb-edu
metrics:
- accuracy
inference:
parameters:
max_new_tokens: 64
do_sample: true
temperature: 0.8
repetition_penalty: 1.05
no_repeat_ngram_size: 4
eta_cutoff: 0.0006
renormalize_logits: true
widget:
- text: My name is El Microondas the Wise, and
example_title: El Microondas
- text: Kennesaw State University is a public
example_title: Kennesaw State University
- text: >-
Bungie Studios is an American video game developer. They are most famous
for developing the award winning Halo series of video games. They also
made Destiny. The studio was founded
example_title: Bungie
- text: The Mona Lisa is a world-renowned painting created by
example_title: Mona Lisa
- text: >-
The Harry Potter series, written by J.K. Rowling, begins with the book
titled
example_title: Harry Potter Series
- text: >-
Question: I have cities, but no houses. I have mountains, but no trees. I
have water, but no fish. What am I?
Answer:
example_title: Riddle
- text: The process of photosynthesis involves the conversion of
example_title: Photosynthesis
- text: >-
Jane went to the store to buy some groceries. She picked up apples,
oranges, and a loaf of bread. When she got home, she realized she forgot
example_title: Story Continuation
- text: >-
Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph,
and another train leaves Station B at 10:00 AM and travels at 80 mph, when
will they meet if the distance between the stations is 300 miles?
To determine
example_title: Math Problem
- text: In the context of computer programming, an algorithm is
example_title: Algorithm Definition
pipeline_tag: text-generation
model-index:
- name: smol_llama-220M-GQA-fineweb_edu
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 19.88
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 2.31
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.23
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.26
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.41
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
name: Open LLM Leaderboard
smol_llama-220M-GQA-fineweb-edu-10BT
This model is a continously pretrained version of BEE-spoke-data/smol_llama-220M-GQA on the 10BT-sample subset of HuggingFaceFW/fineweb-edu
.
It achieves the following results on the evaluation set:
- Loss: 2.7416
- Accuracy: 0.4560
- Num Input Tokens Seen: 10810818560
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 80085
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen |
---|---|---|---|---|---|
2.8567 | 0.0145 | 300 | 2.8291 | 0.4450 | 157286400 |
2.8517 | 0.0291 | 600 | 2.8153 | 0.4465 | 314572800 |
2.8224 | 0.0436 | 900 | 2.8025 | 0.4481 | 471859200 |
2.8178 | 0.0582 | 1200 | 2.7912 | 0.4495 | 629145600 |
2.8001 | 0.0727 | 1500 | 2.7832 | 0.4505 | 786432000 |
2.8045 | 0.0873 | 1800 | 2.7772 | 0.4512 | 943718400 |
2.8019 | 0.1018 | 2100 | 2.7729 | 0.4516 | 1101004800 |
2.7995 | 0.1164 | 2400 | 2.7691 | 0.4522 | 1258291200 |
2.8006 | 0.1309 | 2700 | 2.7657 | 0.4526 | 1415577600 |
2.7886 | 0.1455 | 3000 | 2.7631 | 0.4528 | 1572864000 |
2.7907 | 0.1600 | 3300 | 2.7606 | 0.4532 | 1730150400 |
2.7907 | 0.1746 | 3600 | 2.7588 | 0.4536 | 1887436800 |
2.7788 | 0.1891 | 3900 | 2.7569 | 0.4537 | 2044723200 |
2.7942 | 0.2037 | 4200 | 2.7552 | 0.4540 | 2202009600 |
2.793 | 0.2182 | 4500 | 2.7538 | 0.4543 | 2359296000 |
2.7958 | 0.2328 | 4800 | 2.7526 | 0.4544 | 2516582400 |
2.78 | 0.2473 | 5100 | 2.7515 | 0.4547 | 2673868800 |
2.7937 | 0.2619 | 5400 | 2.7506 | 0.4548 | 2831155200 |
2.7717 | 0.2764 | 5700 | 2.7498 | 0.4548 | 2988441600 |
2.7832 | 0.2910 | 6000 | 2.7490 | 0.4548 | 3145728000 |
2.768 | 0.3055 | 6300 | 2.7482 | 0.4550 | 3303014400 |
2.7653 | 0.3201 | 6600 | 2.7476 | 0.4551 | 3460300800 |
2.7843 | 0.3346 | 6900 | 2.7470 | 0.4551 | 3617587200 |
2.7765 | 0.3492 | 7200 | 2.7464 | 0.4550 | 3774873600 |
2.7778 | 0.3637 | 7500 | 2.7460 | 0.4552 | 3932160000 |
2.7655 | 0.3783 | 7800 | 2.7455 | 0.4553 | 4089446400 |
2.7943 | 0.3928 | 8100 | 2.7449 | 0.4554 | 4246732800 |
2.7715 | 0.4074 | 8400 | 2.7447 | 0.4552 | 4404019200 |
2.7828 | 0.4219 | 8700 | 2.7443 | 0.4554 | 4561305600 |
2.7883 | 0.4365 | 9000 | 2.7440 | 0.4556 | 4718592000 |
2.7627 | 0.4510 | 9300 | 2.7437 | 0.4556 | 4875878400 |
2.7841 | 0.4656 | 9600 | 2.7435 | 0.4557 | 5033164800 |
2.7734 | 0.4801 | 9900 | 2.7433 | 0.4557 | 5190451200 |
2.7829 | 0.4947 | 10200 | 2.7430 | 0.4557 | 5347737600 |
2.781 | 0.5092 | 10500 | 2.7429 | 0.4557 | 5505024000 |
2.7757 | 0.5238 | 10800 | 2.7428 | 0.4557 | 5662310400 |
2.779 | 0.5383 | 11100 | 2.7426 | 0.4559 | 5819596800 |
2.7771 | 0.5529 | 11400 | 2.7425 | 0.4559 | 5976883200 |
2.7828 | 0.5674 | 11700 | 2.7424 | 0.4560 | 6134169600 |
2.7814 | 0.5820 | 12000 | 2.7423 | 0.4558 | 6291456000 |
2.7735 | 0.5965 | 12300 | 2.7422 | 0.4559 | 6448742400 |
2.7848 | 0.6111 | 12600 | 2.7420 | 0.4559 | 6606028800 |
2.7748 | 0.6256 | 12900 | 2.7420 | 0.4559 | 6763315200 |
2.7697 | 0.6402 | 13200 | 2.7419 | 0.4560 | 6920601600 |
2.7689 | 0.6547 | 13500 | 2.7419 | 0.4560 | 7077888000 |
2.7747 | 0.6692 | 13800 | 2.7419 | 0.4559 | 7235174400 |
2.786 | 0.6838 | 14100 | 2.7418 | 0.4561 | 7392460800 |
2.7801 | 0.6983 | 14400 | 2.7417 | 0.4560 | 7549747200 |
2.7658 | 0.7129 | 14700 | 2.7417 | 0.4561 | 7707033600 |
2.7717 | 0.7274 | 15000 | 2.7417 | 0.4560 | 7864320000 |
2.7717 | 0.7420 | 15300 | 2.7417 | 0.4560 | 8021606400 |
2.777 | 0.7565 | 15600 | 2.7417 | 0.4559 | 8178892800 |
2.7793 | 0.7711 | 15900 | 2.7416 | 0.4560 | 8336179200 |
2.7718 | 0.7856 | 16200 | 2.7416 | 0.4559 | 8493465600 |
2.7757 | 0.8002 | 16500 | 2.7416 | 0.4560 | 8650752000 |
2.7763 | 0.8147 | 16800 | 2.7416 | 0.4559 | 8808038400 |
2.7581 | 0.8293 | 17100 | 2.7416 | 0.4559 | 8965324800 |
2.7719 | 0.8438 | 17400 | 2.7416 | 0.4560 | 9122611200 |
2.7609 | 0.8584 | 17700 | 2.7416 | 0.4560 | 9279897600 |
2.7753 | 0.8729 | 18000 | 2.7416 | 0.4559 | 9437184000 |
2.7674 | 0.8875 | 18300 | 2.7415 | 0.4560 | 9594470400 |
2.7601 | 0.9020 | 18600 | 2.7416 | 0.4560 | 9751756800 |
2.7823 | 0.9166 | 18900 | 2.7416 | 0.4560 | 9909043200 |
2.7767 | 0.9311 | 19200 | 2.7416 | 0.4560 | 10066329600 |
2.7759 | 0.9457 | 19500 | 2.7416 | 0.4560 | 10223616000 |
2.7722 | 0.9602 | 19800 | 2.7415 | 0.4560 | 10380902400 |
2.7764 | 0.9748 | 20100 | 2.7416 | 0.4560 | 10538188800 |
2.7724 | 0.9893 | 20400 | 2.7416 | 0.4559 | 10695475200 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.1+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 6.52 |
IFEval (0-Shot) | 19.88 |
BBH (3-Shot) | 2.31 |
MATH Lvl 5 (4-Shot) | 0.00 |
GPQA (0-shot) | 1.23 |
MuSR (0-shot) | 14.26 |
MMLU-PRO (5-shot) | 1.41 |