NewsKoT5
The training data for this T5 model consists of Korean news articles (29GB). However, the performance has not been fine-tuned through the use of small batches and a limited number of training steps, so it may not be fully optimized.
Quick tour
from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("BM-K/NewsKoT5-small")
model = T5ForConditionalGeneration.from_pretrained("BM-K/NewsKoT5-small")
input_ids = tokenizer("ํ๊ตญํ๋ฐ์ฌ์ฒด ๋๋ฆฌํธ๊ฐ ์ค์ฉ๊ธ <extra_id_0> ๋ฐ์ฌ์ฒด๋ก์ โ๋ฐ๋ทโ๋ฅผ ์ฑ๊ณต์ ์ผ๋ก <extra_id_1>", return_tensors="pt").input_ids
labels = tokenizer("<extra_id_0> ์์ฑ <extra_id_1> ๋ง์ณค๋ค <extra_id_2>", return_tensors="pt").input_ids
outputs = model(input_ids=input_ids,
labels=labels)
News Summarization Performance (F1-score)
After restoring the model's tokenized output to the original text, Rouge performance was evaluated by comparing it to the reference and hypothesis tokenized using mecab.
- Dacon ํ๊ตญ์ด ๋ฌธ์ ์์ฑ์์ฝ AI ๊ฒฝ์ง๋ํ Dataset
- Training: 29,432
- Validation: 7,358
- Test: 9,182
#Param | rouge-1 | rouge-2 | rouge-l | |
---|---|---|---|---|
pko-t5-small | 95M | 51.48 | 33.18 | 44.96 |
NewsT5-small | 61M | 52.15 | 33.59 | 45.41 |
- AI-Hub ๋ฌธ์์์ฝ ํ
์คํธ Dataset
- Training: 245,626
- Validation: 20,296
- Test: 9,931
#Param | rouge-1 | rouge-2 | rouge-l | |
---|---|---|---|---|
pko-t5-small | 95M | 53.44 | 34.03 | 45.36 |
NewsT5-small | 61M | 53.74 | 34.27 | 45.52 |
- Downloads last month
- 103
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.