Baljee's picture
Add new SentenceTransformer model
a3062f2 verified
metadata
base_model: BAAI/bge-base-en-v1.5
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      The consolidated financial statements and accompanying notes listed in
      Part IV, Item 15(a)(1) of this Annual Report on Form 10-K are included
      elsewhere in this Annual Report on Form 10-K.
    sentences:
      - >-
        What is the carrying value of the indefinite-lived intangible assets
        related to the Certificate of Needs and Medicare licenses as of December
        31, 2023?
      - >-
        What sections of the Annual Report on Form 10-K contain the company's
        financial statements?
      - >-
        What was the effective tax rate excluding discrete net tax benefits for
        the year 2022?
  - source_sentence: >-
      Consumers are served through Amazon's online and physical stores with an
      emphasis on selection, price, and convenience.
    sentences:
      - >-
        What decision did the European Commission make on July 10, 2023
        regarding the United States?
      - >-
        What are the primary offerings to consumers through Amazon's online and
        physical stores?
      - >-
        What activities are included in the services and other revenue segment
        of General Motors Company?
  - source_sentence: >-
      Visa has traditionally referred to their structure of facilitating secure,
      reliable, and efficient money movement among consumers, issuing and
      acquiring financial institutions, and merchants as the 'four-party' model.
    sentences:
      - >-
        What model does Visa traditionally refer to regarding their transaction
        process among consumers, financial institutions, and merchants?
      - >-
        What percentage of Meta's U.S. workforce in 2023 were represented by
        people with disabilities, veterans, and members of the LGBTQ+ community?
      - >-
        What are the revenue sources for the Company’s Health Care Benefits
        Segment?
  - source_sentence: >-
      In addition to LinkedIn’s free services, LinkedIn offers monetized
      solutions: Talent Solutions, Marketing Solutions, Premium Subscriptions,
      and Sales Solutions. Talent Solutions provide insights for workforce
      planning and tools to hire, nurture, and develop talent. Talent Solutions
      also includes Learning Solutions, which help businesses close critical
      skills gaps in times where companies are having to do more with existing
      talent.
    sentences:
      - >-
        What were the major factors contributing to the increased expenses
        excluding interest for Investor Services and Advisor Services in 2023?
      - >-
        What were the pre-tax earnings of the manufacturing sector in 2023,
        2022, and 2021?
      - What does LinkedIn's Talent Solutions include?
  - source_sentence: >-
      Management assessed the effectiveness of the company’s internal control
      over financial reporting as of December 31, 2023. In making this
      assessment, we used the criteria set forth by the Committee of Sponsoring
      Organizations of the Treadway Commission (COSO) in Internal
      Control—Integrated Framework (2013).
    sentences:
      - >-
        What criteria did Caterpillar Inc. use to assess the effectiveness of
        its internal control over financial reporting as of December 31, 2023?
      - What are the primary components of U.S. sales volumes for Ford?
      - >-
        What was the percentage increase in Schwab's common stock dividend in
        2022?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6914285714285714
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8242857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.86
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9057142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6914285714285714
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2747619047619047
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17199999999999996
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09057142857142855
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6914285714285714
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8242857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.86
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9057142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7997414359858885
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7657346938775508
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.76928838935954
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.6842857142857143
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8185714285714286
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8657142857142858
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9085714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6842857142857143
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27285714285714285
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17314285714285713
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09085714285714284
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6842857142857143
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8185714285714286
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8657142857142858
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9085714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7969055985295089
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7611088435374149
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7642426459320879
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6857142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8171428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8557142857142858
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8957142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6857142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2723809523809524
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17114285714285715
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08957142857142855
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6857142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8171428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8557142857142858
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8957142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7920320996457081
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7586683673469387
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7625179179417977
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6657142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8042857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.84
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8785714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6657142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2680952380952381
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16799999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08785714285714284
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6657142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8042857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.84
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8785714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7737169352715014
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7398701814058954
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7442100075694871
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6442857142857142
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.78
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8171428571428572
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8614285714285714
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6442857142857142
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1634285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08614285714285713
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6442857142857142
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.78
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8171428571428572
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8614285714285714
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7538341619041866
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7192709750566892
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7239357494750268
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Baljee/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Management assessed the effectiveness of the company’s internal control over financial reporting as of December 31, 2023. In making this assessment, we used the criteria set forth by the Committee of Sponsoring Organizations of the Treadway Commission (COSO) in Internal Control—Integrated Framework (2013).',
    'What criteria did Caterpillar Inc. use to assess the effectiveness of its internal control over financial reporting as of December 31, 2023?',
    'What are the primary components of U.S. sales volumes for Ford?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6914
cosine_accuracy@3 0.8243
cosine_accuracy@5 0.86
cosine_accuracy@10 0.9057
cosine_precision@1 0.6914
cosine_precision@3 0.2748
cosine_precision@5 0.172
cosine_precision@10 0.0906
cosine_recall@1 0.6914
cosine_recall@3 0.8243
cosine_recall@5 0.86
cosine_recall@10 0.9057
cosine_ndcg@10 0.7997
cosine_mrr@10 0.7657
cosine_map@100 0.7693

Information Retrieval

Metric Value
cosine_accuracy@1 0.6843
cosine_accuracy@3 0.8186
cosine_accuracy@5 0.8657
cosine_accuracy@10 0.9086
cosine_precision@1 0.6843
cosine_precision@3 0.2729
cosine_precision@5 0.1731
cosine_precision@10 0.0909
cosine_recall@1 0.6843
cosine_recall@3 0.8186
cosine_recall@5 0.8657
cosine_recall@10 0.9086
cosine_ndcg@10 0.7969
cosine_mrr@10 0.7611
cosine_map@100 0.7642

Information Retrieval

Metric Value
cosine_accuracy@1 0.6857
cosine_accuracy@3 0.8171
cosine_accuracy@5 0.8557
cosine_accuracy@10 0.8957
cosine_precision@1 0.6857
cosine_precision@3 0.2724
cosine_precision@5 0.1711
cosine_precision@10 0.0896
cosine_recall@1 0.6857
cosine_recall@3 0.8171
cosine_recall@5 0.8557
cosine_recall@10 0.8957
cosine_ndcg@10 0.792
cosine_mrr@10 0.7587
cosine_map@100 0.7625

Information Retrieval

Metric Value
cosine_accuracy@1 0.6657
cosine_accuracy@3 0.8043
cosine_accuracy@5 0.84
cosine_accuracy@10 0.8786
cosine_precision@1 0.6657
cosine_precision@3 0.2681
cosine_precision@5 0.168
cosine_precision@10 0.0879
cosine_recall@1 0.6657
cosine_recall@3 0.8043
cosine_recall@5 0.84
cosine_recall@10 0.8786
cosine_ndcg@10 0.7737
cosine_mrr@10 0.7399
cosine_map@100 0.7442

Information Retrieval

Metric Value
cosine_accuracy@1 0.6443
cosine_accuracy@3 0.78
cosine_accuracy@5 0.8171
cosine_accuracy@10 0.8614
cosine_precision@1 0.6443
cosine_precision@3 0.26
cosine_precision@5 0.1634
cosine_precision@10 0.0861
cosine_recall@1 0.6443
cosine_recall@3 0.78
cosine_recall@5 0.8171
cosine_recall@10 0.8614
cosine_ndcg@10 0.7538
cosine_mrr@10 0.7193
cosine_map@100 0.7239

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 8 tokens
    • mean: 44.33 tokens
    • max: 289 tokens
    • min: 9 tokens
    • mean: 20.43 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    The Company defines fair value as the price received to transfer an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date. In accordance with ASC 820, Fair Value Measurements and Disclosures, the Company uses the fair value hierarchy which prioritizes the inputs used to measure fair value. The hierarchy gives the highest priority to unadjusted quoted prices in active markets for identical assets or liabilities (Level 1), observable inputs other than quoted prices (Level 2), and unobservable inputs (Level 3). What is the role of Level 1, Level 2, and Level 3 inputs in the fair value hierarchy according to ASC 820?
    In the event of conversion of the Notes, if shares are delivered to the Company under the Capped Call Transactions, they will offset the dilutive effect of the shares that the Company would issue under the Notes. What happens to the dilutive effect of shares issued under the Notes if shares are delivered to the Company under the Capped Call Transactions during the conversion?
    Marketing expenses increased $48.8 million to $759.2 million in the year ended December 31, 2023 compared to the year ended December 31, 2022. How much did the marketing expenses increase in the year ended December 31, 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_map@100 dim_512_cosine_map@100 dim_256_cosine_map@100 dim_128_cosine_map@100 dim_64_cosine_map@100
0.8122 10 1.5603 - - - - -
0.9746 12 - 0.7543 0.7541 0.7484 0.7283 0.6889
1.6244 20 0.6616 - - - - -
1.9492 24 - 0.7654 0.7633 0.7583 0.7414 0.7198
2.4365 30 0.4579 - - - - -
2.9239 36 - 0.7697 0.7635 0.7626 0.7462 0.7241
3.2487 40 0.3995 - - - - -
3.8985 48 - 0.7693 0.7642 0.7625 0.7442 0.7239
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.0
  • Transformers: 4.41.2
  • PyTorch: 2.2.0a0+6a974be
  • Accelerate: 0.27.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}