llama-3b-sst-5
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2205
- Accuracy: 0.4623
- Precision: 0.4490
- Recall: 0.4360
- F1: 0.4354
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.4944 | 100 | 1.4847 | 0.3597 | 0.3413 | 0.3388 | 0.3306 |
No log | 2.9888 | 200 | 1.3224 | 0.4133 | 0.4129 | 0.3843 | 0.3901 |
No log | 4.4794 | 300 | 1.2652 | 0.4405 | 0.4313 | 0.4090 | 0.4121 |
No log | 5.9738 | 400 | 1.2515 | 0.4550 | 0.4465 | 0.4335 | 0.4248 |
5.2724 | 7.4644 | 500 | 1.2249 | 0.4659 | 0.4514 | 0.4367 | 0.4377 |
5.2724 | 8.9588 | 600 | 1.2205 | 0.4623 | 0.4490 | 0.4360 | 0.4354 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 7
Model tree for BayanDuygu/llama-3b-sst-5
Base model
meta-llama/Llama-3.2-3B-Instruct