|
--- |
|
library_name: peft |
|
license: llama3.1 |
|
base_model: meta-llama/Llama-3.1-8B-Instruct |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: llama-7b-offense |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama-7b-offense |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5788 |
|
- Accuracy: 0.7709 |
|
- F1: 0.5386 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 0.9662 | 100 | 0.7477 | 0.6895 | 0.3890 | |
|
| No log | 1.9275 | 200 | 0.6635 | 0.7186 | 0.4739 | |
|
| No log | 2.8889 | 300 | 0.6167 | 0.7430 | 0.5328 | |
|
| No log | 3.8502 | 400 | 0.6212 | 0.7384 | 0.5399 | |
|
| 2.5728 | 4.8116 | 500 | 0.5934 | 0.7558 | 0.5532 | |
|
| 2.5728 | 5.7729 | 600 | 0.5906 | 0.7605 | 0.5231 | |
|
| 2.5728 | 6.7343 | 700 | 0.5838 | 0.7698 | 0.505 | |
|
| 2.5728 | 7.6957 | 800 | 0.5780 | 0.7605 | 0.5381 | |
|
| 2.5728 | 8.6570 | 900 | 0.5799 | 0.7686 | 0.5340 | |
|
| 1.9058 | 9.6184 | 1000 | 0.5788 | 0.7709 | 0.5386 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |