llama-7b-stance
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0488
- Accuracy: 0.5583
- Precision: 0.5489
- Recall: 0.5339
- F1: 0.5316
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 23 | 1.6614 | 0.3502 | 0.3641 | 0.3722 | 0.3428 |
No log | 2.0 | 46 | 1.3645 | 0.4305 | 0.4308 | 0.4285 | 0.4071 |
No log | 3.0 | 69 | 1.1866 | 0.4893 | 0.4687 | 0.4613 | 0.4567 |
No log | 4.0 | 92 | 1.1019 | 0.5343 | 0.5079 | 0.4942 | 0.4964 |
No log | 5.0 | 115 | 1.0842 | 0.5516 | 0.5335 | 0.4926 | 0.4995 |
No log | 6.0 | 138 | 1.0671 | 0.5634 | 0.5589 | 0.5165 | 0.5210 |
No log | 7.0 | 161 | 1.0930 | 0.5435 | 0.5430 | 0.5265 | 0.5195 |
No log | 8.0 | 184 | 1.0652 | 0.5440 | 0.5324 | 0.5368 | 0.5260 |
No log | 9.0 | 207 | 1.0162 | 0.5619 | 0.5352 | 0.5279 | 0.5295 |
No log | 10.0 | 230 | 1.0488 | 0.5583 | 0.5489 | 0.5339 | 0.5316 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Model tree for BayanDuygu/llama-7b-stance
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct