e5-R-mistral-7b / README.md
BeastyZ's picture
Update README.md
09824d4 verified
|
raw
history blame
42.9 kB
metadata
library_name: transformers
license: apache-2.0
datasets:
  - BeastyZ/E5-R
language:
  - en
model-index:
  - name: e5-R-mistral-7b
    results:
      - dataset:
          config: default
          name: MTEB ArguAna
          revision: None
          split: test
          type: mteb/arguana
        metrics:
          - type: map_at_1
            value: 33.57
          - type: map_at_10
            value: 49.952000000000005
          - type: map_at_100
            value: 50.673
          - type: map_at_1000
            value: 50.674
          - type: map_at_3
            value: 44.915
          - type: map_at_5
            value: 47.876999999999995
          - type: mrr_at_1
            value: 34.211000000000006
          - type: mrr_at_10
            value: 50.19
          - type: mrr_at_100
            value: 50.905
          - type: mrr_at_1000
            value: 50.906
          - type: mrr_at_3
            value: 45.128
          - type: mrr_at_5
            value: 48.097
          - type: ndcg_at_1
            value: 33.57
          - type: ndcg_at_10
            value: 58.994
          - type: ndcg_at_100
            value: 61.806000000000004
          - type: ndcg_at_1000
            value: 61.824999999999996
          - type: ndcg_at_3
            value: 48.681000000000004
          - type: ndcg_at_5
            value: 54.001
          - type: precision_at_1
            value: 33.57
          - type: precision_at_10
            value: 8.784
          - type: precision_at_100
            value: 0.9950000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 19.867
          - type: precision_at_5
            value: 14.495
          - type: recall_at_1
            value: 33.57
          - type: recall_at_10
            value: 87.83800000000001
          - type: recall_at_100
            value: 99.502
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 59.602
          - type: recall_at_5
            value: 72.475
          - type: main_score
            value: 58.994
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackAndroidRetrieval
          revision: None
          split: test
          type: mteb/cqadupstack-android
        metrics:
          - type: map_at_1
            value: 34.577999999999996
          - type: map_at_10
            value: 47.308
          - type: map_at_100
            value: 49.014
          - type: map_at_1000
            value: 49.126999999999995
          - type: map_at_3
            value: 43.4
          - type: map_at_5
            value: 45.426
          - type: mrr_at_1
            value: 42.632
          - type: mrr_at_10
            value: 53.711
          - type: mrr_at_100
            value: 54.422000000000004
          - type: mrr_at_1000
            value: 54.452
          - type: mrr_at_3
            value: 51.097
          - type: mrr_at_5
            value: 52.535
          - type: ndcg_at_1
            value: 42.632
          - type: ndcg_at_10
            value: 54.408
          - type: ndcg_at_100
            value: 59.789
          - type: ndcg_at_1000
            value: 61.149
          - type: ndcg_at_3
            value: 49
          - type: ndcg_at_5
            value: 51.141000000000005
          - type: precision_at_1
            value: 42.632
          - type: precision_at_10
            value: 10.472
          - type: precision_at_100
            value: 1.6469999999999998
          - type: precision_at_1000
            value: 0.203
          - type: precision_at_3
            value: 23.701
          - type: precision_at_5
            value: 16.938
          - type: recall_at_1
            value: 34.577999999999996
          - type: recall_at_10
            value: 67.948
          - type: recall_at_100
            value: 89.642
          - type: recall_at_1000
            value: 97.597
          - type: recall_at_3
            value: 51.381
          - type: recall_at_5
            value: 57.855000000000004
          - type: main_score
            value: 54.408
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackEnglishRetrieval
          revision: None
          split: test
          type: mteb/cqadupstack-english
        metrics:
          - type: map_at_1
            value: 36.195
          - type: map_at_10
            value: 48.433
          - type: map_at_100
            value: 49.724000000000004
          - type: map_at_1000
            value: 49.842999999999996
          - type: map_at_3
            value: 44.940000000000005
          - type: map_at_5
            value: 46.992
          - type: mrr_at_1
            value: 45.669
          - type: mrr_at_10
            value: 54.627
          - type: mrr_at_100
            value: 55.186
          - type: mrr_at_1000
            value: 55.221
          - type: mrr_at_3
            value: 52.282
          - type: mrr_at_5
            value: 53.795
          - type: ndcg_at_1
            value: 45.669
          - type: ndcg_at_10
            value: 54.494
          - type: ndcg_at_100
            value: 58.582
          - type: ndcg_at_1000
            value: 60.305
          - type: ndcg_at_3
            value: 49.978
          - type: ndcg_at_5
            value: 52.251999999999995
          - type: precision_at_1
            value: 45.669
          - type: precision_at_10
            value: 10.255
          - type: precision_at_100
            value: 1.582
          - type: precision_at_1000
            value: 0.202
          - type: precision_at_3
            value: 24.352
          - type: precision_at_5
            value: 17.236
          - type: recall_at_1
            value: 36.195
          - type: recall_at_10
            value: 65.058
          - type: recall_at_100
            value: 81.972
          - type: recall_at_1000
            value: 92.527
          - type: recall_at_3
            value: 51.427
          - type: recall_at_5
            value: 57.915000000000006
          - type: main_score
            value: 54.494
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackGamingRetrieval
          revision: None
          split: test
          type: mteb/cqadupstack-gaming
        metrics:
          - type: map_at_1
            value: 44.521
          - type: map_at_10
            value: 58.418000000000006
          - type: map_at_100
            value: 59.447
          - type: map_at_1000
            value: 59.484
          - type: map_at_3
            value: 54.954
          - type: map_at_5
            value: 56.940999999999995
          - type: mrr_at_1
            value: 51.097
          - type: mrr_at_10
            value: 61.751
          - type: mrr_at_100
            value: 62.373999999999995
          - type: mrr_at_1000
            value: 62.39
          - type: mrr_at_3
            value: 59.467000000000006
          - type: mrr_at_5
            value: 60.853
          - type: ndcg_at_1
            value: 51.097
          - type: ndcg_at_10
            value: 64.47699999999999
          - type: ndcg_at_100
            value: 68.162
          - type: ndcg_at_1000
            value: 68.807
          - type: ndcg_at_3
            value: 59.028000000000006
          - type: ndcg_at_5
            value: 61.75000000000001
          - type: precision_at_1
            value: 51.097
          - type: precision_at_10
            value: 10.313
          - type: precision_at_100
            value: 1.303
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 26.352999999999998
          - type: precision_at_5
            value: 17.931
          - type: recall_at_1
            value: 44.521
          - type: recall_at_10
            value: 78.81
          - type: recall_at_100
            value: 94.12899999999999
          - type: recall_at_1000
            value: 98.542
          - type: recall_at_3
            value: 64.363
          - type: recall_at_5
            value: 71.114
          - type: main_score
            value: 64.47699999999999
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackGisRetrieval
          revision: None
          split: test
          type: mteb/cqadupstack-gis
        metrics:
          - type: map_at_1
            value: 27.913
          - type: map_at_10
            value: 37.518
          - type: map_at_100
            value: 38.559
          - type: map_at_1000
            value: 38.635999999999996
          - type: map_at_3
            value: 34.304
          - type: map_at_5
            value: 36.142
          - type: mrr_at_1
            value: 30.056
          - type: mrr_at_10
            value: 39.493
          - type: mrr_at_100
            value: 40.411
          - type: mrr_at_1000
            value: 40.46
          - type: mrr_at_3
            value: 36.629
          - type: mrr_at_5
            value: 38.239000000000004
          - type: ndcg_at_1
            value: 30.056
          - type: ndcg_at_10
            value: 43.038
          - type: ndcg_at_100
            value: 48.254000000000005
          - type: ndcg_at_1000
            value: 49.94
          - type: ndcg_at_3
            value: 36.897000000000006
          - type: ndcg_at_5
            value: 39.918
          - type: precision_at_1
            value: 30.056
          - type: precision_at_10
            value: 6.701
          - type: precision_at_100
            value: 0.983
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_3
            value: 15.518
          - type: precision_at_5
            value: 11.096
          - type: recall_at_1
            value: 27.913
          - type: recall_at_10
            value: 58.111999999999995
          - type: recall_at_100
            value: 82.133
          - type: recall_at_1000
            value: 94.388
          - type: recall_at_3
            value: 41.735
          - type: recall_at_5
            value: 48.929
          - type: main_score
            value: 43.038
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackMathematicaRetrieval
          revision: None
          split: test
          type: mteb/cqadupstack-mathematica
        metrics:
          - type: map_at_1
            value: 19.505
          - type: map_at_10
            value: 28.723
          - type: map_at_100
            value: 30.184
          - type: map_at_1000
            value: 30.298000000000002
          - type: map_at_3
            value: 25.317
          - type: map_at_5
            value: 27.247
          - type: mrr_at_1
            value: 24.254
          - type: mrr_at_10
            value: 33.743
          - type: mrr_at_100
            value: 34.8
          - type: mrr_at_1000
            value: 34.859
          - type: mrr_at_3
            value: 30.659
          - type: mrr_at_5
            value: 32.481
          - type: ndcg_at_1
            value: 24.254
          - type: ndcg_at_10
            value: 34.797
          - type: ndcg_at_100
            value: 41.074
          - type: ndcg_at_1000
            value: 43.639
          - type: ndcg_at_3
            value: 28.823
          - type: ndcg_at_5
            value: 31.679000000000002
          - type: precision_at_1
            value: 24.254
          - type: precision_at_10
            value: 6.691999999999999
          - type: precision_at_100
            value: 1.127
          - type: precision_at_1000
            value: 0.147
          - type: precision_at_3
            value: 14.179
          - type: precision_at_5
            value: 10.647
          - type: recall_at_1
            value: 19.505
          - type: recall_at_10
            value: 48.495
          - type: recall_at_100
            value: 74.888
          - type: recall_at_1000
            value: 93.04599999999999
          - type: recall_at_3
            value: 31.96
          - type: recall_at_5
            value: 39.183
          - type: main_score
            value: 34.797
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackPhysicsRetrieval
          revision: None
          split: test
          type: mteb/cqadupstack-physics
        metrics:
          - type: map_at_1
            value: 32.565
          - type: map_at_10
            value: 45.793
          - type: map_at_100
            value: 47.22
          - type: map_at_1000
            value: 47.309
          - type: map_at_3
            value: 42.164
          - type: map_at_5
            value: 44.114
          - type: mrr_at_1
            value: 40.038000000000004
          - type: mrr_at_10
            value: 51.086
          - type: mrr_at_100
            value: 51.867
          - type: mrr_at_1000
            value: 51.897000000000006
          - type: mrr_at_3
            value: 48.396
          - type: mrr_at_5
            value: 49.921
          - type: ndcg_at_1
            value: 40.038000000000004
          - type: ndcg_at_10
            value: 52.329
          - type: ndcg_at_100
            value: 57.788
          - type: ndcg_at_1000
            value: 59.199999999999996
          - type: ndcg_at_3
            value: 46.861000000000004
          - type: ndcg_at_5
            value: 49.318
          - type: precision_at_1
            value: 40.038000000000004
          - type: precision_at_10
            value: 9.702
          - type: precision_at_100
            value: 1.4500000000000002
          - type: precision_at_1000
            value: 0.172
          - type: precision_at_3
            value: 22.842000000000002
          - type: precision_at_5
            value: 16.014999999999997
          - type: recall_at_1
            value: 32.565
          - type: recall_at_10
            value: 66.178
          - type: recall_at_100
            value: 88.568
          - type: recall_at_1000
            value: 97.419
          - type: recall_at_3
            value: 50.604000000000006
          - type: recall_at_5
            value: 57.247
          - type: main_score
            value: 52.329
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackProgrammersRetrieval
          revision: None
          split: test
          type: mteb/cqadupstack-programmers
        metrics:
          - type: map_at_1
            value: 29.395
          - type: map_at_10
            value: 41.93
          - type: map_at_100
            value: 43.364999999999995
          - type: map_at_1000
            value: 43.461
          - type: map_at_3
            value: 38.076
          - type: map_at_5
            value: 40.099000000000004
          - type: mrr_at_1
            value: 36.644
          - type: mrr_at_10
            value: 47.336
          - type: mrr_at_100
            value: 48.132000000000005
          - type: mrr_at_1000
            value: 48.169000000000004
          - type: mrr_at_3
            value: 44.196999999999996
          - type: mrr_at_5
            value: 45.972
          - type: ndcg_at_1
            value: 36.644
          - type: ndcg_at_10
            value: 48.768
          - type: ndcg_at_100
            value: 54.177
          - type: ndcg_at_1000
            value: 55.923
          - type: ndcg_at_3
            value: 42.663000000000004
          - type: ndcg_at_5
            value: 45.308
          - type: precision_at_1
            value: 36.644
          - type: precision_at_10
            value: 9.212
          - type: precision_at_100
            value: 1.4000000000000001
          - type: precision_at_1000
            value: 0.172
          - type: precision_at_3
            value: 20.776
          - type: precision_at_5
            value: 14.954
          - type: recall_at_1
            value: 29.395
          - type: recall_at_10
            value: 63.653000000000006
          - type: recall_at_100
            value: 85.488
          - type: recall_at_1000
            value: 97.235
          - type: recall_at_3
            value: 46.64
          - type: recall_at_5
            value: 53.604
          - type: main_score
            value: 48.768
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackStatsRetrieval
          revision: None
          split: test
          type: mteb/cqadupstack-stats
        metrics:
          - type: map_at_1
            value: 27.642
          - type: map_at_10
            value: 35.988
          - type: map_at_100
            value: 37.016
          - type: map_at_1000
            value: 37.102000000000004
          - type: map_at_3
            value: 33.016
          - type: map_at_5
            value: 34.598
          - type: mrr_at_1
            value: 30.828
          - type: mrr_at_10
            value: 38.866
          - type: mrr_at_100
            value: 39.732
          - type: mrr_at_1000
            value: 39.789
          - type: mrr_at_3
            value: 36.35
          - type: mrr_at_5
            value: 37.653
          - type: ndcg_at_1
            value: 30.828
          - type: ndcg_at_10
            value: 41.134
          - type: ndcg_at_100
            value: 46.169
          - type: ndcg_at_1000
            value: 48.157
          - type: ndcg_at_3
            value: 35.674
          - type: ndcg_at_5
            value: 38.104
          - type: precision_at_1
            value: 30.828
          - type: precision_at_10
            value: 6.61
          - type: precision_at_100
            value: 1.0030000000000001
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 15.235000000000001
          - type: precision_at_5
            value: 10.706
          - type: recall_at_1
            value: 27.642
          - type: recall_at_10
            value: 54.142
          - type: recall_at_100
            value: 76.988
          - type: recall_at_1000
            value: 91.282
          - type: recall_at_3
            value: 39.128
          - type: recall_at_5
            value: 45.117000000000004
          - type: main_score
            value: 41.134
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackTexRetrieval
          revision: None
          split: test
          type: mteb/cqadupstack-tex
        metrics:
          - type: map_at_1
            value: 20.505000000000003
          - type: map_at_10
            value: 28.921000000000003
          - type: map_at_100
            value: 30.165999999999997
          - type: map_at_1000
            value: 30.293
          - type: map_at_3
            value: 26.251
          - type: map_at_5
            value: 27.669
          - type: mrr_at_1
            value: 25.224000000000004
          - type: mrr_at_10
            value: 33.4
          - type: mrr_at_100
            value: 34.347
          - type: mrr_at_1000
            value: 34.418
          - type: mrr_at_3
            value: 31.028
          - type: mrr_at_5
            value: 32.33
          - type: ndcg_at_1
            value: 25.224000000000004
          - type: ndcg_at_10
            value: 34.202
          - type: ndcg_at_100
            value: 39.757
          - type: ndcg_at_1000
            value: 42.481
          - type: ndcg_at_3
            value: 29.656
          - type: ndcg_at_5
            value: 31.643
          - type: precision_at_1
            value: 25.224000000000004
          - type: precision_at_10
            value: 6.256
          - type: precision_at_100
            value: 1.054
          - type: precision_at_1000
            value: 0.148
          - type: precision_at_3
            value: 14.12
          - type: precision_at_5
            value: 10.103
          - type: recall_at_1
            value: 20.505000000000003
          - type: recall_at_10
            value: 45.578
          - type: recall_at_100
            value: 70.226
          - type: recall_at_1000
            value: 89.242
          - type: recall_at_3
            value: 32.446999999999996
          - type: recall_at_5
            value: 37.842
          - type: main_score
            value: 34.202
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackUnixRetrieval
          revision: None
          split: test
          type: mteb/cqadupstack-unix
        metrics:
          - type: map_at_1
            value: 30.446
          - type: map_at_10
            value: 41.296
          - type: map_at_100
            value: 42.620000000000005
          - type: map_at_1000
            value: 42.703
          - type: map_at_3
            value: 37.969
          - type: map_at_5
            value: 39.878
          - type: mrr_at_1
            value: 35.821
          - type: mrr_at_10
            value: 45.395
          - type: mrr_at_100
            value: 46.308
          - type: mrr_at_1000
            value: 46.354
          - type: mrr_at_3
            value: 42.553000000000004
          - type: mrr_at_5
            value: 44.352999999999994
          - type: ndcg_at_1
            value: 35.821
          - type: ndcg_at_10
            value: 47.176
          - type: ndcg_at_100
            value: 52.827999999999996
          - type: ndcg_at_1000
            value: 54.56100000000001
          - type: ndcg_at_3
            value: 41.695
          - type: ndcg_at_5
            value: 44.424
          - type: precision_at_1
            value: 35.821
          - type: precision_at_10
            value: 8.106
          - type: precision_at_100
            value: 1.2269999999999999
          - type: precision_at_1000
            value: 0.147
          - type: precision_at_3
            value: 19.403000000000002
          - type: precision_at_5
            value: 13.730999999999998
          - type: recall_at_1
            value: 30.446
          - type: recall_at_10
            value: 60.704
          - type: recall_at_100
            value: 84.73
          - type: recall_at_1000
            value: 96.531
          - type: recall_at_3
            value: 45.615
          - type: recall_at_5
            value: 52.683
          - type: main_score
            value: 47.176
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackWebmastersRetrieval
          revision: None
          split: test
          type: mteb/cqadupstack-webmasters
        metrics:
          - type: map_at_1
            value: 27.889000000000003
          - type: map_at_10
            value: 38.676
          - type: map_at_100
            value: 40.448
          - type: map_at_1000
            value: 40.689
          - type: map_at_3
            value: 35.13
          - type: map_at_5
            value: 37.058
          - type: mrr_at_1
            value: 34.19
          - type: mrr_at_10
            value: 43.532
          - type: mrr_at_100
            value: 44.504
          - type: mrr_at_1000
            value: 44.554
          - type: mrr_at_3
            value: 40.679
          - type: mrr_at_5
            value: 42.22
          - type: ndcg_at_1
            value: 34.19
          - type: ndcg_at_10
            value: 45.335
          - type: ndcg_at_100
            value: 51.196
          - type: ndcg_at_1000
            value: 53.337
          - type: ndcg_at_3
            value: 39.782000000000004
          - type: ndcg_at_5
            value: 42.24
          - type: precision_at_1
            value: 34.19
          - type: precision_at_10
            value: 8.834
          - type: precision_at_100
            value: 1.7229999999999999
          - type: precision_at_1000
            value: 0.255
          - type: precision_at_3
            value: 18.775
          - type: precision_at_5
            value: 13.715
          - type: recall_at_1
            value: 27.889000000000003
          - type: recall_at_10
            value: 58.391000000000005
          - type: recall_at_100
            value: 83.94200000000001
          - type: recall_at_1000
            value: 96.736
          - type: recall_at_3
            value: 42.208
          - type: recall_at_5
            value: 48.947
          - type: main_score
            value: 45.335
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackWordpressRetrieval
          revision: None
          split: test
          type: mteb/cqadupstack-wordpress
        metrics:
          - type: map_at_1
            value: 24.75
          - type: map_at_10
            value: 34.025
          - type: map_at_100
            value: 35.126000000000005
          - type: map_at_1000
            value: 35.219
          - type: map_at_3
            value: 31.607000000000003
          - type: map_at_5
            value: 32.962
          - type: mrr_at_1
            value: 27.357
          - type: mrr_at_10
            value: 36.370999999999995
          - type: mrr_at_100
            value: 37.364000000000004
          - type: mrr_at_1000
            value: 37.423
          - type: mrr_at_3
            value: 34.288000000000004
          - type: mrr_at_5
            value: 35.434
          - type: ndcg_at_1
            value: 27.357
          - type: ndcg_at_10
            value: 38.97
          - type: ndcg_at_100
            value: 44.317
          - type: ndcg_at_1000
            value: 46.475
          - type: ndcg_at_3
            value: 34.473
          - type: ndcg_at_5
            value: 36.561
          - type: precision_at_1
            value: 27.357
          - type: precision_at_10
            value: 6.081
          - type: precision_at_100
            value: 0.9299999999999999
          - type: precision_at_1000
            value: 0.124
          - type: precision_at_3
            value: 14.911
          - type: precision_at_5
            value: 10.24
          - type: recall_at_1
            value: 24.75
          - type: recall_at_10
            value: 51.856
          - type: recall_at_100
            value: 76.44300000000001
          - type: recall_at_1000
            value: 92.078
          - type: recall_at_3
            value: 39.427
          - type: recall_at_5
            value: 44.639
          - type: main_score
            value: 38.97
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ClimateFEVER
          revision: None
          split: test
          type: mteb/climate-fever
        metrics:
          - type: map_at_1
            value: 16.436
          - type: map_at_10
            value: 29.693
          - type: map_at_100
            value: 32.179
          - type: map_at_1000
            value: 32.353
          - type: map_at_3
            value: 24.556
          - type: map_at_5
            value: 27.105
          - type: mrr_at_1
            value: 37.524
          - type: mrr_at_10
            value: 51.475
          - type: mrr_at_100
            value: 52.107000000000006
          - type: mrr_at_1000
            value: 52.123
          - type: mrr_at_3
            value: 48.35
          - type: mrr_at_5
            value: 50.249
          - type: ndcg_at_1
            value: 37.524
          - type: ndcg_at_10
            value: 40.258
          - type: ndcg_at_100
            value: 48.364000000000004
          - type: ndcg_at_1000
            value: 51.031000000000006
          - type: ndcg_at_3
            value: 33.359
          - type: ndcg_at_5
            value: 35.573
          - type: precision_at_1
            value: 37.524
          - type: precision_at_10
            value: 12.886000000000001
          - type: precision_at_100
            value: 2.169
          - type: precision_at_1000
            value: 0.268
          - type: precision_at_3
            value: 25.624000000000002
          - type: precision_at_5
            value: 19.453
          - type: recall_at_1
            value: 16.436
          - type: recall_at_10
            value: 47.77
          - type: recall_at_100
            value: 74.762
          - type: recall_at_1000
            value: 89.316
          - type: recall_at_3
            value: 30.508000000000003
          - type: recall_at_5
            value: 37.346000000000004
          - type: main_score
            value: 40.258
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DBPedia
          revision: None
          split: test
          type: mteb/dbpedia
        metrics:
          - type: map_at_1
            value: 10.147
          - type: map_at_10
            value: 24.631
          - type: map_at_100
            value: 35.657
          - type: map_at_1000
            value: 37.824999999999996
          - type: map_at_3
            value: 16.423
          - type: map_at_5
            value: 19.666
          - type: mrr_at_1
            value: 76.5
          - type: mrr_at_10
            value: 82.793
          - type: mrr_at_100
            value: 83.015
          - type: mrr_at_1000
            value: 83.021
          - type: mrr_at_3
            value: 81.75
          - type: mrr_at_5
            value: 82.375
          - type: ndcg_at_1
            value: 64.75
          - type: ndcg_at_10
            value: 51.031000000000006
          - type: ndcg_at_100
            value: 56.005
          - type: ndcg_at_1000
            value: 63.068000000000005
          - type: ndcg_at_3
            value: 54.571999999999996
          - type: ndcg_at_5
            value: 52.66499999999999
          - type: precision_at_1
            value: 76.5
          - type: precision_at_10
            value: 42.15
          - type: precision_at_100
            value: 13.22
          - type: precision_at_1000
            value: 2.5989999999999998
          - type: precision_at_3
            value: 58.416999999999994
          - type: precision_at_5
            value: 52.2
          - type: recall_at_1
            value: 10.147
          - type: recall_at_10
            value: 30.786
          - type: recall_at_100
            value: 62.873000000000005
          - type: recall_at_1000
            value: 85.358
          - type: recall_at_3
            value: 17.665
          - type: recall_at_5
            value: 22.088
          - type: main_score
            value: 51.031000000000006
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB FEVER
          revision: None
          split: test
          type: mteb/fever
        metrics:
          - type: map_at_1
            value: 78.52900000000001
          - type: map_at_10
            value: 87.24199999999999
          - type: map_at_100
            value: 87.446
          - type: map_at_1000
            value: 87.457
          - type: map_at_3
            value: 86.193
          - type: map_at_5
            value: 86.898
          - type: mrr_at_1
            value: 84.518
          - type: mrr_at_10
            value: 90.686
          - type: mrr_at_100
            value: 90.73
          - type: mrr_at_1000
            value: 90.731
          - type: mrr_at_3
            value: 90.227
          - type: mrr_at_5
            value: 90.575
          - type: ndcg_at_1
            value: 84.518
          - type: ndcg_at_10
            value: 90.324
          - type: ndcg_at_100
            value: 90.96300000000001
          - type: ndcg_at_1000
            value: 91.134
          - type: ndcg_at_3
            value: 88.937
          - type: ndcg_at_5
            value: 89.788
          - type: precision_at_1
            value: 84.518
          - type: precision_at_10
            value: 10.872
          - type: precision_at_100
            value: 1.1440000000000001
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 34.108
          - type: precision_at_5
            value: 21.154999999999998
          - type: recall_at_1
            value: 78.52900000000001
          - type: recall_at_10
            value: 96.123
          - type: recall_at_100
            value: 98.503
          - type: recall_at_1000
            value: 99.518
          - type: recall_at_3
            value: 92.444
          - type: recall_at_5
            value: 94.609
          - type: main_score
            value: 90.324
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB FiQA2018
          revision: None
          split: test
          type: mteb/fiqa
        metrics:
          - type: map_at_1
            value: 29.38
          - type: map_at_10
            value: 50.28
          - type: map_at_100
            value: 52.532999999999994
          - type: map_at_1000
            value: 52.641000000000005
          - type: map_at_3
            value: 43.556
          - type: map_at_5
            value: 47.617
          - type: mrr_at_1
            value: 56.79
          - type: mrr_at_10
            value: 65.666
          - type: mrr_at_100
            value: 66.211
          - type: mrr_at_1000
            value: 66.226
          - type: mrr_at_3
            value: 63.452
          - type: mrr_at_5
            value: 64.895
          - type: ndcg_at_1
            value: 56.79
          - type: ndcg_at_10
            value: 58.68
          - type: ndcg_at_100
            value: 65.22
          - type: ndcg_at_1000
            value: 66.645
          - type: ndcg_at_3
            value: 53.981
          - type: ndcg_at_5
            value: 55.95
          - type: precision_at_1
            value: 56.79
          - type: precision_at_10
            value: 16.311999999999998
          - type: precision_at_100
            value: 2.316
          - type: precision_at_1000
            value: 0.258
          - type: precision_at_3
            value: 36.214
          - type: precision_at_5
            value: 27.067999999999998
          - type: recall_at_1
            value: 29.38
          - type: recall_at_10
            value: 66.503
          - type: recall_at_100
            value: 89.885
          - type: recall_at_1000
            value: 97.954
          - type: recall_at_3
            value: 48.866
          - type: recall_at_5
            value: 57.60999999999999
          - type: main_score
            value: 58.68
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB HotpotQA
          revision: None
          split: test
          type: mteb/hotpotqa
        metrics:
          - type: map_at_1
            value: 42.134
          - type: map_at_10
            value: 73.412
          - type: map_at_100
            value: 74.144
          - type: map_at_1000
            value: 74.181
          - type: map_at_3
            value: 70.016
          - type: map_at_5
            value: 72.174
          - type: mrr_at_1
            value: 84.267
          - type: mrr_at_10
            value: 89.18599999999999
          - type: mrr_at_100
            value: 89.29599999999999
          - type: mrr_at_1000
            value: 89.298
          - type: mrr_at_3
            value: 88.616
          - type: mrr_at_5
            value: 88.957
          - type: ndcg_at_1
            value: 84.267
          - type: ndcg_at_10
            value: 80.164
          - type: ndcg_at_100
            value: 82.52199999999999
          - type: ndcg_at_1000
            value: 83.176
          - type: ndcg_at_3
            value: 75.616
          - type: ndcg_at_5
            value: 78.184
          - type: precision_at_1
            value: 84.267
          - type: precision_at_10
            value: 16.916
          - type: precision_at_100
            value: 1.872
          - type: precision_at_1000
            value: 0.196
          - type: precision_at_3
            value: 49.71
          - type: precision_at_5
            value: 31.854
          - type: recall_at_1
            value: 42.134
          - type: recall_at_10
            value: 84.578
          - type: recall_at_100
            value: 93.606
          - type: recall_at_1000
            value: 97.86
          - type: recall_at_3
            value: 74.564
          - type: recall_at_5
            value: 79.635
          - type: main_score
            value: 80.164
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB MSMARCO
          revision: None
          split: dev
          type: mteb/msmarco
        metrics:
          - type: map_at_1
            value: 22.276
          - type: map_at_10
            value: 35.493
          - type: map_at_100
            value: 36.656
          - type: map_at_1000
            value: 36.699
          - type: map_at_3
            value: 31.320999999999998
          - type: map_at_5
            value: 33.772999999999996
          - type: mrr_at_1
            value: 22.966
          - type: mrr_at_10
            value: 36.074
          - type: mrr_at_100
            value: 37.183
          - type: mrr_at_1000
            value: 37.219
          - type: mrr_at_3
            value: 31.984
          - type: mrr_at_5
            value: 34.419
          - type: ndcg_at_1
            value: 22.966
          - type: ndcg_at_10
            value: 42.895
          - type: ndcg_at_100
            value: 48.453
          - type: ndcg_at_1000
            value: 49.464999999999996
          - type: ndcg_at_3
            value: 34.410000000000004
          - type: ndcg_at_5
            value: 38.78
          - type: precision_at_1
            value: 22.966
          - type: precision_at_10
            value: 6.88
          - type: precision_at_100
            value: 0.966
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 14.785
          - type: precision_at_5
            value: 11.074
          - type: recall_at_1
            value: 22.276
          - type: recall_at_10
            value: 65.756
          - type: recall_at_100
            value: 91.34100000000001
          - type: recall_at_1000
            value: 98.957
          - type: recall_at_3
            value: 42.67
          - type: recall_at_5
            value: 53.161
          - type: main_score
            value: 42.895
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB NFCorpus
          revision: None
          split: test
          type: mteb/nfcorpus
        metrics:
          - type: map_at_1
            value: 7.188999999999999
          - type: map_at_10
            value: 16.176
          - type: map_at_100
            value: 20.504
          - type: map_at_1000
            value: 22.203999999999997
          - type: map_at_3
            value: 11.766
          - type: map_at_5
            value: 13.655999999999999
          - type: mrr_at_1
            value: 55.418
          - type: mrr_at_10
            value: 62.791
          - type: mrr_at_100
            value: 63.339
          - type: mrr_at_1000
            value: 63.369
          - type: mrr_at_3
            value: 60.99099999999999
          - type: mrr_at_5
            value: 62.059
          - type: ndcg_at_1
            value: 53.715
          - type: ndcg_at_10
            value: 41.377
          - type: ndcg_at_100
            value: 37.999
          - type: ndcg_at_1000
            value: 46.726
          - type: ndcg_at_3
            value: 47.262
          - type: ndcg_at_5
            value: 44.708999999999996
          - type: precision_at_1
            value: 55.108000000000004
          - type: precision_at_10
            value: 30.154999999999998
          - type: precision_at_100
            value: 9.582
          - type: precision_at_1000
            value: 2.2720000000000002
          - type: precision_at_3
            value: 43.55
          - type: precision_at_5
            value: 38.204
          - type: recall_at_1
            value: 7.188999999999999
          - type: recall_at_10
            value: 20.655
          - type: recall_at_100
            value: 38.068000000000005
          - type: recall_at_1000
            value: 70.208
          - type: recall_at_3
            value: 12.601
          - type: recall_at_5
            value: 15.573999999999998
          - type: main_score
            value: 41.377
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB NQ
          revision: None
          split: test
          type: mteb/nq
        metrics:
          - type: map_at_1
            value: 46.017
          - type: map_at_10
            value: 62.910999999999994
          - type: map_at_100
            value: 63.526
          - type: map_at_1000
            value: 63.536
          - type: map_at_3
            value: 59.077999999999996
          - type: map_at_5
            value: 61.521
          - type: mrr_at_1
            value: 51.68000000000001
          - type: mrr_at_10
            value: 65.149
          - type: mrr_at_100
            value: 65.542
          - type: mrr_at_1000
            value: 65.55
          - type: mrr_at_3
            value: 62.49
          - type: mrr_at_5
            value: 64.178
          - type: ndcg_at_1
            value: 51.651
          - type: ndcg_at_10
            value: 69.83500000000001
          - type: ndcg_at_100
            value: 72.18
          - type: ndcg_at_1000
            value: 72.393
          - type: ndcg_at_3
            value: 63.168
          - type: ndcg_at_5
            value: 66.958
          - type: precision_at_1
            value: 51.651
          - type: precision_at_10
            value: 10.626
          - type: precision_at_100
            value: 1.195
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 28.012999999999998
          - type: precision_at_5
            value: 19.09
          - type: recall_at_1
            value: 46.017
          - type: recall_at_10
            value: 88.345
          - type: recall_at_100
            value: 98.129
          - type: recall_at_1000
            value: 99.696
          - type: recall_at_3
            value: 71.531
          - type: recall_at_5
            value: 80.108
          - type: main_score
            value: 69.83500000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB QuoraRetrieval
          revision: None
          split: test
          type: mteb/quora
        metrics:
          - type: map_at_1
            value: 72.473
          - type: map_at_10
            value: 86.72800000000001
          - type: map_at_100
            value: 87.323
          - type: map_at_1000
            value: 87.332
          - type: map_at_3
            value: 83.753
          - type: map_at_5
            value: 85.627
          - type: mrr_at_1
            value: 83.39
          - type: mrr_at_10
            value: 89.149
          - type: mrr_at_100
            value: 89.228
          - type: mrr_at_1000
            value: 89.229
          - type: mrr_at_3
            value: 88.335
          - type: mrr_at_5
            value: 88.895
          - type: ndcg_at_1
            value: 83.39
          - type: ndcg_at_10
            value: 90.109
          - type: ndcg_at_100
            value: 91.09
          - type: ndcg_at_1000
            value: 91.13900000000001
          - type: ndcg_at_3
            value: 87.483
          - type: ndcg_at_5
            value: 88.942
          - type: precision_at_1
            value: 83.39
          - type: precision_at_10
            value: 13.711
          - type: precision_at_100
            value: 1.549
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 38.342999999999996
          - type: precision_at_5
            value: 25.188
          - type: recall_at_1
            value: 72.473
          - type: recall_at_10
            value: 96.57
          - type: recall_at_100
            value: 99.792
          - type: recall_at_1000
            value: 99.99900000000001
          - type: recall_at_3
            value: 88.979
          - type: recall_at_5
            value: 93.163
          - type: main_score
            value: 90.109
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SCIDOCS
          revision: None
          split: test
          type: mteb/scidocs
        metrics:
          - type: map_at_1
            value: 4.598
          - type: map_at_10
            value: 11.405999999999999
          - type: map_at_100
            value: 13.447999999999999
          - type: map_at_1000
            value: 13.758999999999999
          - type: map_at_3
            value: 8.332
          - type: map_at_5
            value: 9.709
          - type: mrr_at_1
            value: 22.6
          - type: mrr_at_10
            value: 32.978
          - type: mrr_at_100
            value: 34.149
          - type: mrr_at_1000
            value: 34.213
          - type: mrr_at_3
            value: 29.7
          - type: mrr_at_5
            value: 31.485000000000003
          - type: ndcg_at_1
            value: 22.6
          - type: ndcg_at_10
            value: 19.259999999999998
          - type: ndcg_at_100
            value: 27.21
          - type: ndcg_at_1000
            value: 32.7
          - type: ndcg_at_3
            value: 18.445
          - type: ndcg_at_5
            value: 15.812000000000001
          - type: precision_at_1
            value: 22.6
          - type: precision_at_10
            value: 9.959999999999999
          - type: precision_at_100
            value: 2.139
          - type: precision_at_1000
            value: 0.345
          - type: precision_at_3
            value: 17.299999999999997
          - type: precision_at_5
            value: 13.719999999999999
          - type: recall_at_1
            value: 4.598
          - type: recall_at_10
            value: 20.186999999999998
          - type: recall_at_100
            value: 43.362
          - type: recall_at_1000
            value: 70.11800000000001
          - type: recall_at_3
            value: 10.543
          - type: recall_at_5
            value: 13.923
          - type: main_score
            value: 19.259999999999998
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SciFact
          revision: None
          split: test
          type: mteb/scifact
        metrics:
          - type: map_at_1
            value: 65.467
          - type: map_at_10
            value: 74.935
          - type: map_at_100
            value: 75.395
          - type: map_at_1000
            value: 75.412
          - type: map_at_3
            value: 72.436
          - type: map_at_5
            value: 73.978
          - type: mrr_at_1
            value: 68.667
          - type: mrr_at_10
            value: 76.236
          - type: mrr_at_100
            value: 76.537
          - type: mrr_at_1000
            value: 76.55499999999999
          - type: mrr_at_3
            value: 74.722
          - type: mrr_at_5
            value: 75.639
          - type: ndcg_at_1
            value: 68.667
          - type: ndcg_at_10
            value: 78.92099999999999
          - type: ndcg_at_100
            value: 80.645
          - type: ndcg_at_1000
            value: 81.045
          - type: ndcg_at_3
            value: 75.19500000000001
          - type: ndcg_at_5
            value: 77.114
          - type: precision_at_1
            value: 68.667
          - type: precision_at_10
            value: 10.133000000000001
          - type: precision_at_100
            value: 1.0999999999999999
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 28.889
          - type: precision_at_5
            value: 18.8
          - type: recall_at_1
            value: 65.467
          - type: recall_at_10
            value: 89.517
          - type: recall_at_100
            value: 97
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 79.72200000000001
          - type: recall_at_5
            value: 84.511
          - type: main_score
            value: 78.92099999999999
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB TRECCOVID
          revision: None
          split: test
          type: mteb/trec-covid
        metrics:
          - type: map_at_1
            value: 0.244
          - type: map_at_10
            value: 2.183
          - type: map_at_100
            value: 13.712
          - type: map_at_1000
            value: 33.147
          - type: map_at_3
            value: 0.7270000000000001
          - type: map_at_5
            value: 1.199
          - type: mrr_at_1
            value: 94
          - type: mrr_at_10
            value: 97
          - type: mrr_at_100
            value: 97
          - type: mrr_at_1000
            value: 97
          - type: mrr_at_3
            value: 97
          - type: mrr_at_5
            value: 97
          - type: ndcg_at_1
            value: 92
          - type: ndcg_at_10
            value: 84.399
          - type: ndcg_at_100
            value: 66.771
          - type: ndcg_at_1000
            value: 59.092
          - type: ndcg_at_3
            value: 89.173
          - type: ndcg_at_5
            value: 88.52600000000001
          - type: precision_at_1
            value: 94
          - type: precision_at_10
            value: 86.8
          - type: precision_at_100
            value: 68.24
          - type: precision_at_1000
            value: 26.003999999999998
          - type: precision_at_3
            value: 92.667
          - type: precision_at_5
            value: 92.4
          - type: recall_at_1
            value: 0.244
          - type: recall_at_10
            value: 2.302
          - type: recall_at_100
            value: 16.622
          - type: recall_at_1000
            value: 55.175
          - type: recall_at_3
            value: 0.748
          - type: recall_at_5
            value: 1.247
          - type: main_score
            value: 84.399
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Touche2020
          revision: None
          split: test
          type: mteb/touche2020
        metrics:
          - type: map_at_1
            value: 2.707
          - type: map_at_10
            value: 10.917
          - type: map_at_100
            value: 16.308
          - type: map_at_1000
            value: 17.953
          - type: map_at_3
            value: 5.65
          - type: map_at_5
            value: 7.379
          - type: mrr_at_1
            value: 34.694
          - type: mrr_at_10
            value: 49.745
          - type: mrr_at_100
            value: 50.309000000000005
          - type: mrr_at_1000
            value: 50.32
          - type: mrr_at_3
            value: 44.897999999999996
          - type: mrr_at_5
            value: 48.061
          - type: ndcg_at_1
            value: 33.672999999999995
          - type: ndcg_at_10
            value: 26.894000000000002
          - type: ndcg_at_100
            value: 37.423
          - type: ndcg_at_1000
            value: 49.376999999999995
          - type: ndcg_at_3
            value: 30.456
          - type: ndcg_at_5
            value: 27.772000000000002
          - type: precision_at_1
            value: 34.694
          - type: precision_at_10
            value: 23.878
          - type: precision_at_100
            value: 7.489999999999999
          - type: precision_at_1000
            value: 1.555
          - type: precision_at_3
            value: 31.293
          - type: precision_at_5
            value: 26.939
          - type: recall_at_1
            value: 2.707
          - type: recall_at_10
            value: 18.104
          - type: recall_at_100
            value: 46.93
          - type: recall_at_1000
            value: 83.512
          - type: recall_at_3
            value: 6.622999999999999
          - type: recall_at_5
            value: 10.051
          - type: main_score
            value: 26.894000000000002
        task:
          type: Retrieval
tags:
  - mteb

Model Card for e5-R-mistral-7b

Model Description

e5-R-mistral-7b is a LLM retriever fine-tuned from mistralai/Mistral-7B-v0.1.

  • Model type: CausalLM
  • Repository: Welcome to our GitHub repository to obtain code
  • Training dataset: Dataset used for fine-tuning e5-R-mistral-7b is available here.