Model Details

Model Description

This model is fine-tuned for the task of masked language modeling in Persian. The model can predict missing words in Persian sentences when a word is replaced by the [MASK] token. It is useful for a range of NLP applications, including text completion, question answering, and contextual understanding of Persian texts.

  • Developed by: Behpouyan
  • Model type: Encoder
  • Language(s) (NLP): Persian

How to Get Started with the Model

from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Behpouyan/Behpouyan-Fill-Mask")
model = AutoModelForMaskedLM.from_pretrained("Behpouyan/Behpouyan-Fill-Mask")

# List of 5 Persian sentences with a masked word (replacing a word with [MASK])
sentences = [
    "این کتاب بسیار <mask> است.",  # The book is very <mask
    "مشتری همیشه از <mask> شما راضی است.",  # The customer is always satisfied with your <mask
    "من به دنبال <mask> هستم.",  # I am looking for <mask
    "این پروژه نیاز به <mask> دارد.",  # This project needs <mask
    "تیم ما برای انجام کارها <mask> است."  # Our team is <mask to do the tasks
]

# Function to predict masked words
def predict_masked_word(sentence):
    # Tokenize the input sentence
    inputs = tokenizer(sentence, return_tensors="pt")

    # Forward pass to get logits
    with torch.no_grad():
        outputs = model(**inputs)
    logits = outputs.logits

    # Get the position of the [MASK] token
    mask_token_index = torch.where(inputs.input_ids == tokenizer.mask_token_id)[1].item()

    # Get the predicted token
    predicted_token_id = torch.argmax(logits[0, mask_token_index]).item()
    predicted_word = tokenizer.decode([predicted_token_id])

    return predicted_word

# Test the model on the sentences
for sentence in sentences:
    predicted_word = predict_masked_word(sentence)
    print(f"Sentence: {sentence}")
    print(f"Predicted word: {predicted_word}")
    print("-" * 50)
Downloads last month
8
Safetensors
Model size
123M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.