BilalMuftuoglu's picture
End of training
5d39cc2 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-hasta-75-fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

beit-base-patch16-224-hasta-75-fold2

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0769
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.5149 0.9167
No log 2.0 2 0.4041 0.9167
No log 3.0 3 0.3602 0.9167
No log 4.0 4 0.3914 0.9167
No log 5.0 5 0.4230 0.9167
No log 6.0 6 0.4505 0.9167
No log 7.0 7 0.4577 0.9167
No log 8.0 8 0.4562 0.9167
No log 9.0 9 0.4353 0.9167
0.2449 10.0 10 0.4424 0.9167
0.2449 11.0 11 0.4563 0.9167
0.2449 12.0 12 0.4720 0.8333
0.2449 13.0 13 0.3685 0.9167
0.2449 14.0 14 0.3112 0.9167
0.2449 15.0 15 0.2517 0.9167
0.2449 16.0 16 0.2199 0.9167
0.2449 17.0 17 0.2582 0.9167
0.2449 18.0 18 0.3222 0.9167
0.2449 19.0 19 0.2529 0.9167
0.1293 20.0 20 0.1724 0.9167
0.1293 21.0 21 0.1393 0.9167
0.1293 22.0 22 0.0965 0.9167
0.1293 23.0 23 0.0769 1.0
0.1293 24.0 24 0.0690 1.0
0.1293 25.0 25 0.1172 0.9167
0.1293 26.0 26 0.1629 0.9167
0.1293 27.0 27 0.1103 0.9167
0.1293 28.0 28 0.1193 1.0
0.1293 29.0 29 0.1003 1.0
0.0785 30.0 30 0.0719 1.0
0.0785 31.0 31 0.1636 0.9167
0.0785 32.0 32 0.2265 0.9167
0.0785 33.0 33 0.2009 0.9167
0.0785 34.0 34 0.1122 0.9167
0.0785 35.0 35 0.0424 1.0
0.0785 36.0 36 0.0407 1.0
0.0785 37.0 37 0.0322 1.0
0.0785 38.0 38 0.0397 1.0
0.0785 39.0 39 0.0569 1.0
0.0519 40.0 40 0.0891 0.9167
0.0519 41.0 41 0.0974 0.9167
0.0519 42.0 42 0.0969 0.9167
0.0519 43.0 43 0.1268 0.9167
0.0519 44.0 44 0.1718 0.9167
0.0519 45.0 45 0.2412 0.9167
0.0519 46.0 46 0.2935 0.9167
0.0519 47.0 47 0.3791 0.9167
0.0519 48.0 48 0.4504 0.9167
0.0519 49.0 49 0.4738 0.9167
0.0542 50.0 50 0.4470 0.9167
0.0542 51.0 51 0.3819 0.9167
0.0542 52.0 52 0.3327 0.9167
0.0542 53.0 53 0.2756 0.9167
0.0542 54.0 54 0.2012 0.9167
0.0542 55.0 55 0.1548 0.9167
0.0542 56.0 56 0.1668 0.9167
0.0542 57.0 57 0.2124 0.9167
0.0542 58.0 58 0.2389 0.9167
0.0542 59.0 59 0.2337 0.9167
0.0223 60.0 60 0.2025 0.9167
0.0223 61.0 61 0.1676 0.9167
0.0223 62.0 62 0.1085 0.9167
0.0223 63.0 63 0.0652 0.9167
0.0223 64.0 64 0.0644 0.9167
0.0223 65.0 65 0.0544 1.0
0.0223 66.0 66 0.0577 1.0
0.0223 67.0 67 0.0799 0.9167
0.0223 68.0 68 0.1005 0.9167
0.0223 69.0 69 0.1069 0.9167
0.0255 70.0 70 0.1410 0.9167
0.0255 71.0 71 0.1748 0.9167
0.0255 72.0 72 0.2266 0.9167
0.0255 73.0 73 0.2680 0.9167
0.0255 74.0 74 0.2917 0.9167
0.0255 75.0 75 0.3008 0.9167
0.0255 76.0 76 0.2897 0.9167
0.0255 77.0 77 0.2652 0.9167
0.0255 78.0 78 0.2542 0.9167
0.0255 79.0 79 0.2405 0.9167
0.0252 80.0 80 0.2391 0.9167
0.0252 81.0 81 0.2155 0.9167
0.0252 82.0 82 0.1953 0.9167
0.0252 83.0 83 0.1830 0.9167
0.0252 84.0 84 0.1672 0.9167
0.0252 85.0 85 0.1694 0.9167
0.0252 86.0 86 0.1743 0.9167
0.0252 87.0 87 0.1845 0.9167
0.0252 88.0 88 0.2098 0.9167
0.0252 89.0 89 0.2427 0.9167
0.0256 90.0 90 0.2682 0.9167
0.0256 91.0 91 0.2838 0.9167
0.0256 92.0 92 0.2936 0.9167
0.0256 93.0 93 0.3037 0.9167
0.0256 94.0 94 0.3065 0.9167
0.0256 95.0 95 0.3058 0.9167
0.0256 96.0 96 0.2997 0.9167
0.0256 97.0 97 0.2920 0.9167
0.0256 98.0 98 0.2849 0.9167
0.0256 99.0 99 0.2810 0.9167
0.0279 100.0 100 0.2798 0.9167

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1