BilalMuftuoglu's picture
End of training
432d0f9 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-hasta-75-fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

beit-base-patch16-224-hasta-75-fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0812
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 2.3241 0.0833
No log 2.0 2 1.8900 0.0833
No log 3.0 3 1.1748 0.3333
No log 4.0 4 0.5751 0.9167
No log 5.0 5 0.4224 0.9167
No log 6.0 6 0.3931 0.9167
No log 7.0 7 0.3635 0.9167
No log 8.0 8 0.5637 0.8333
No log 9.0 9 0.4256 0.9167
0.4996 10.0 10 0.2830 0.9167
0.4996 11.0 11 0.2743 0.9167
0.4996 12.0 12 0.4505 0.9167
0.4996 13.0 13 0.3552 0.9167
0.4996 14.0 14 0.2453 0.9167
0.4996 15.0 15 0.2528 0.9167
0.4996 16.0 16 0.2926 0.9167
0.4996 17.0 17 0.3253 0.8333
0.4996 18.0 18 0.3367 0.8333
0.4996 19.0 19 0.3681 0.8333
0.1796 20.0 20 0.2677 0.9167
0.1796 21.0 21 0.2704 0.9167
0.1796 22.0 22 0.3116 0.9167
0.1796 23.0 23 0.3650 0.9167
0.1796 24.0 24 0.2170 0.9167
0.1796 25.0 25 0.2114 0.9167
0.1796 26.0 26 0.1976 0.9167
0.1796 27.0 27 0.1619 0.9167
0.1796 28.0 28 0.1646 0.9167
0.1796 29.0 29 0.1432 0.9167
0.1179 30.0 30 0.0812 1.0
0.1179 31.0 31 0.1163 1.0
0.1179 32.0 32 0.0898 1.0
0.1179 33.0 33 0.1190 0.9167
0.1179 34.0 34 0.1464 0.9167
0.1179 35.0 35 0.1136 1.0
0.1179 36.0 36 0.2270 0.9167
0.1179 37.0 37 0.2265 0.9167
0.1179 38.0 38 0.0995 1.0
0.1179 39.0 39 0.0853 1.0
0.1084 40.0 40 0.0858 1.0
0.1084 41.0 41 0.0970 1.0
0.1084 42.0 42 0.0949 1.0
0.1084 43.0 43 0.0709 1.0
0.1084 44.0 44 0.0807 0.9167
0.1084 45.0 45 0.1052 0.9167
0.1084 46.0 46 0.0629 1.0
0.1084 47.0 47 0.0272 1.0
0.1084 48.0 48 0.0775 1.0
0.1084 49.0 49 0.1113 1.0
0.0591 50.0 50 0.1189 1.0
0.0591 51.0 51 0.0526 1.0
0.0591 52.0 52 0.0262 1.0
0.0591 53.0 53 0.1035 0.9167
0.0591 54.0 54 0.1508 0.9167
0.0591 55.0 55 0.1280 0.9167
0.0591 56.0 56 0.0652 0.9167
0.0591 57.0 57 0.0357 1.0
0.0591 58.0 58 0.0407 1.0
0.0591 59.0 59 0.0430 1.0
0.0637 60.0 60 0.0468 1.0
0.0637 61.0 61 0.0997 0.9167
0.0637 62.0 62 0.2200 0.9167
0.0637 63.0 63 0.2979 0.9167
0.0637 64.0 64 0.3167 0.9167
0.0637 65.0 65 0.2611 0.9167
0.0637 66.0 66 0.1697 0.9167
0.0637 67.0 67 0.0669 0.9167
0.0637 68.0 68 0.0313 1.0
0.0637 69.0 69 0.0255 1.0
0.0446 70.0 70 0.0243 1.0
0.0446 71.0 71 0.0188 1.0
0.0446 72.0 72 0.0210 1.0
0.0446 73.0 73 0.0261 1.0
0.0446 74.0 74 0.0378 1.0
0.0446 75.0 75 0.0492 1.0
0.0446 76.0 76 0.0679 0.9167
0.0446 77.0 77 0.0958 0.9167
0.0446 78.0 78 0.0803 0.9167
0.0446 79.0 79 0.0455 1.0
0.0489 80.0 80 0.0194 1.0
0.0489 81.0 81 0.0141 1.0
0.0489 82.0 82 0.0109 1.0
0.0489 83.0 83 0.0104 1.0
0.0489 84.0 84 0.0108 1.0
0.0489 85.0 85 0.0121 1.0
0.0489 86.0 86 0.0118 1.0
0.0489 87.0 87 0.0109 1.0
0.0489 88.0 88 0.0107 1.0
0.0489 89.0 89 0.0107 1.0
0.0322 90.0 90 0.0107 1.0
0.0322 91.0 91 0.0107 1.0
0.0322 92.0 92 0.0106 1.0
0.0322 93.0 93 0.0105 1.0
0.0322 94.0 94 0.0105 1.0
0.0322 95.0 95 0.0105 1.0
0.0322 96.0 96 0.0106 1.0
0.0322 97.0 97 0.0106 1.0
0.0322 98.0 98 0.0106 1.0
0.0322 99.0 99 0.0108 1.0
0.0405 100.0 100 0.0109 1.0

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1