deit-base-distilled-patch16-224-65-fold1

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3816
  • Accuracy: 0.8732

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 0.7888 0.4930
No log 1.8462 6 0.7159 0.5070
No log 2.7692 9 0.7091 0.5070
0.7703 4.0 13 0.6908 0.5352
0.7703 4.9231 16 0.6527 0.6197
0.7703 5.8462 19 0.6236 0.7324
0.6435 6.7692 22 0.6357 0.6901
0.6435 8.0 26 0.5442 0.7042
0.6435 8.9231 29 0.5449 0.7183
0.5366 9.8462 32 0.5124 0.7465
0.5366 10.7692 35 0.5029 0.7042
0.5366 12.0 39 0.5486 0.7183
0.4577 12.9231 42 0.5394 0.6761
0.4577 13.8462 45 0.5511 0.7465
0.4577 14.7692 48 0.5794 0.6901
0.4187 16.0 52 0.5368 0.7324
0.4187 16.9231 55 0.4678 0.7887
0.4187 17.8462 58 0.6597 0.7042
0.3542 18.7692 61 0.4969 0.8169
0.3542 20.0 65 0.7103 0.7324
0.3542 20.9231 68 0.4979 0.7606
0.3057 21.8462 71 0.5271 0.7324
0.3057 22.7692 74 0.5357 0.7746
0.3057 24.0 78 0.4847 0.7887
0.2816 24.9231 81 0.5425 0.8310
0.2816 25.8462 84 0.5239 0.8028
0.2816 26.7692 87 0.4141 0.8310
0.2881 28.0 91 0.4997 0.8028
0.2881 28.9231 94 0.4216 0.8028
0.2881 29.8462 97 0.4668 0.7887
0.2421 30.7692 100 0.5904 0.7887
0.2421 32.0 104 0.5240 0.7746
0.2421 32.9231 107 0.9937 0.7606
0.2402 33.8462 110 0.4989 0.8028
0.2402 34.7692 113 0.7232 0.7887
0.2402 36.0 117 0.4815 0.8451
0.1862 36.9231 120 0.7431 0.7746
0.1862 37.8462 123 0.4434 0.8028
0.1862 38.7692 126 0.4760 0.7887
0.1783 40.0 130 0.5006 0.7887
0.1783 40.9231 133 0.4986 0.7887
0.1783 41.8462 136 0.7947 0.7887
0.1783 42.7692 139 0.4897 0.8310
0.1685 44.0 143 0.7500 0.7606
0.1685 44.9231 146 0.6053 0.7887
0.1685 45.8462 149 0.4777 0.8169
0.1779 46.7692 152 0.5800 0.7746
0.1779 48.0 156 0.4681 0.8451
0.1779 48.9231 159 0.7729 0.8028
0.1502 49.8462 162 0.6487 0.8028
0.1502 50.7692 165 0.5224 0.8169
0.1502 52.0 169 0.7017 0.8028
0.1586 52.9231 172 0.6034 0.8028
0.1586 53.8462 175 0.5791 0.8028
0.1586 54.7692 178 0.5651 0.8169
0.134 56.0 182 0.4862 0.8028
0.134 56.9231 185 0.6751 0.8169
0.134 57.8462 188 0.5925 0.8169
0.1602 58.7692 191 0.3982 0.8451
0.1602 60.0 195 0.5969 0.7887
0.1602 60.9231 198 0.5721 0.7887
0.1217 61.8462 201 0.3816 0.8732
0.1217 62.7692 204 0.4110 0.8310
0.1217 64.0 208 0.6716 0.7887
0.1274 64.9231 211 0.3499 0.8732
0.1274 65.8462 214 0.3671 0.8169
0.1274 66.7692 217 0.5318 0.7887
0.1277 68.0 221 0.6734 0.7887
0.1277 68.9231 224 0.4726 0.8028
0.1277 69.8462 227 0.4311 0.8169
0.1232 70.7692 230 0.7072 0.7746
0.1232 72.0 234 0.5859 0.7887
0.1232 72.9231 237 0.3758 0.8310
0.1293 73.8462 240 0.3673 0.8451
0.1293 74.7692 243 0.3673 0.8592
0.1293 76.0 247 0.4752 0.8169
0.1117 76.9231 250 0.4450 0.8310
0.1117 77.8462 253 0.4437 0.8451
0.1117 78.7692 256 0.4330 0.8310
0.1092 80.0 260 0.5095 0.8169
0.1092 80.9231 263 0.4948 0.8169
0.1092 81.8462 266 0.4135 0.8592
0.1092 82.7692 269 0.4190 0.8451
0.1151 84.0 273 0.4194 0.8732
0.1151 84.9231 276 0.4356 0.8310
0.1151 85.8462 279 0.4623 0.8028
0.1085 86.7692 282 0.4845 0.8310
0.1085 88.0 286 0.4998 0.8169
0.1085 88.9231 289 0.5181 0.8028
0.0908 89.8462 292 0.5373 0.8169
0.0908 90.7692 295 0.5465 0.8169
0.0908 92.0 299 0.5422 0.8169
0.0902 92.3077 300 0.5417 0.8169

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BilalMuftuoglu/deit-base-distilled-patch16-224-65-fold1

Finetuned
(73)
this model

Evaluation results