metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-base-distilled-patch16-224-75-fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9534883720930233
deit-base-distilled-patch16-224-75-fold5
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2788
- Accuracy: 0.9535
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 2 | 0.8041 | 0.3488 |
No log | 2.0 | 4 | 0.6042 | 0.7209 |
No log | 3.0 | 6 | 0.6582 | 0.6977 |
No log | 4.0 | 8 | 0.7007 | 0.6977 |
0.6827 | 5.0 | 10 | 0.5653 | 0.6977 |
0.6827 | 6.0 | 12 | 0.4345 | 0.8140 |
0.6827 | 7.0 | 14 | 0.4493 | 0.8140 |
0.6827 | 8.0 | 16 | 0.4764 | 0.8140 |
0.6827 | 9.0 | 18 | 0.3636 | 0.8372 |
0.4147 | 10.0 | 20 | 0.2769 | 0.8605 |
0.4147 | 11.0 | 22 | 0.3538 | 0.8372 |
0.4147 | 12.0 | 24 | 0.3320 | 0.8605 |
0.4147 | 13.0 | 26 | 0.2668 | 0.8372 |
0.4147 | 14.0 | 28 | 0.2823 | 0.8140 |
0.3405 | 15.0 | 30 | 0.4864 | 0.8372 |
0.3405 | 16.0 | 32 | 0.4416 | 0.8372 |
0.3405 | 17.0 | 34 | 0.3585 | 0.8140 |
0.3405 | 18.0 | 36 | 0.4769 | 0.8372 |
0.3405 | 19.0 | 38 | 0.5918 | 0.8372 |
0.3074 | 20.0 | 40 | 0.4116 | 0.8605 |
0.3074 | 21.0 | 42 | 0.4578 | 0.8372 |
0.3074 | 22.0 | 44 | 0.4294 | 0.8605 |
0.3074 | 23.0 | 46 | 0.5401 | 0.8372 |
0.3074 | 24.0 | 48 | 0.2069 | 0.8837 |
0.2155 | 25.0 | 50 | 0.2216 | 0.8837 |
0.2155 | 26.0 | 52 | 0.3837 | 0.8837 |
0.2155 | 27.0 | 54 | 0.2473 | 0.9070 |
0.2155 | 28.0 | 56 | 0.2233 | 0.9070 |
0.2155 | 29.0 | 58 | 0.3489 | 0.8837 |
0.1874 | 30.0 | 60 | 0.4635 | 0.8605 |
0.1874 | 31.0 | 62 | 0.2491 | 0.8837 |
0.1874 | 32.0 | 64 | 0.2564 | 0.8837 |
0.1874 | 33.0 | 66 | 0.3655 | 0.8837 |
0.1874 | 34.0 | 68 | 0.2498 | 0.9302 |
0.1324 | 35.0 | 70 | 0.2922 | 0.8837 |
0.1324 | 36.0 | 72 | 0.5368 | 0.8837 |
0.1324 | 37.0 | 74 | 0.5739 | 0.8837 |
0.1324 | 38.0 | 76 | 0.5049 | 0.8837 |
0.1324 | 39.0 | 78 | 0.5903 | 0.8837 |
0.1222 | 40.0 | 80 | 0.4886 | 0.8837 |
0.1222 | 41.0 | 82 | 0.4174 | 0.8837 |
0.1222 | 42.0 | 84 | 0.5429 | 0.8605 |
0.1222 | 43.0 | 86 | 0.6897 | 0.8605 |
0.1222 | 44.0 | 88 | 0.6805 | 0.8605 |
0.1008 | 45.0 | 90 | 0.4073 | 0.8837 |
0.1008 | 46.0 | 92 | 0.4161 | 0.8837 |
0.1008 | 47.0 | 94 | 0.6485 | 0.8837 |
0.1008 | 48.0 | 96 | 0.6746 | 0.8837 |
0.1008 | 49.0 | 98 | 0.4433 | 0.8837 |
0.117 | 50.0 | 100 | 0.2788 | 0.9535 |
0.117 | 51.0 | 102 | 0.3441 | 0.8837 |
0.117 | 52.0 | 104 | 0.4663 | 0.8605 |
0.117 | 53.0 | 106 | 0.3300 | 0.9070 |
0.117 | 54.0 | 108 | 0.2531 | 0.9535 |
0.0879 | 55.0 | 110 | 0.2261 | 0.9535 |
0.0879 | 56.0 | 112 | 0.3490 | 0.9070 |
0.0879 | 57.0 | 114 | 0.5060 | 0.8837 |
0.0879 | 58.0 | 116 | 0.4847 | 0.8837 |
0.0879 | 59.0 | 118 | 0.3604 | 0.8837 |
0.0898 | 60.0 | 120 | 0.3626 | 0.8837 |
0.0898 | 61.0 | 122 | 0.4641 | 0.8837 |
0.0898 | 62.0 | 124 | 0.4606 | 0.8837 |
0.0898 | 63.0 | 126 | 0.3419 | 0.8837 |
0.0898 | 64.0 | 128 | 0.3331 | 0.9070 |
0.095 | 65.0 | 130 | 0.3804 | 0.8837 |
0.095 | 66.0 | 132 | 0.3783 | 0.8837 |
0.095 | 67.0 | 134 | 0.3524 | 0.8837 |
0.095 | 68.0 | 136 | 0.4232 | 0.8605 |
0.095 | 69.0 | 138 | 0.4157 | 0.8605 |
0.0735 | 70.0 | 140 | 0.4937 | 0.8605 |
0.0735 | 71.0 | 142 | 0.4616 | 0.8605 |
0.0735 | 72.0 | 144 | 0.4388 | 0.8837 |
0.0735 | 73.0 | 146 | 0.3811 | 0.8837 |
0.0735 | 74.0 | 148 | 0.2522 | 0.9302 |
0.0855 | 75.0 | 150 | 0.1677 | 0.9535 |
0.0855 | 76.0 | 152 | 0.1653 | 0.9535 |
0.0855 | 77.0 | 154 | 0.2173 | 0.9535 |
0.0855 | 78.0 | 156 | 0.3596 | 0.8837 |
0.0855 | 79.0 | 158 | 0.4653 | 0.8605 |
0.077 | 80.0 | 160 | 0.4739 | 0.8837 |
0.077 | 81.0 | 162 | 0.3609 | 0.8837 |
0.077 | 82.0 | 164 | 0.2334 | 0.9535 |
0.077 | 83.0 | 166 | 0.2125 | 0.9535 |
0.077 | 84.0 | 168 | 0.2595 | 0.9535 |
0.0731 | 85.0 | 170 | 0.3702 | 0.8837 |
0.0731 | 86.0 | 172 | 0.4634 | 0.8837 |
0.0731 | 87.0 | 174 | 0.5254 | 0.8837 |
0.0731 | 88.0 | 176 | 0.5813 | 0.8837 |
0.0731 | 89.0 | 178 | 0.5628 | 0.8837 |
0.078 | 90.0 | 180 | 0.5479 | 0.8837 |
0.078 | 91.0 | 182 | 0.5216 | 0.8837 |
0.078 | 92.0 | 184 | 0.5098 | 0.8837 |
0.078 | 93.0 | 186 | 0.5244 | 0.8837 |
0.078 | 94.0 | 188 | 0.5472 | 0.8837 |
0.079 | 95.0 | 190 | 0.5590 | 0.8837 |
0.079 | 96.0 | 192 | 0.5589 | 0.8837 |
0.079 | 97.0 | 194 | 0.5455 | 0.8837 |
0.079 | 98.0 | 196 | 0.5322 | 0.8837 |
0.079 | 99.0 | 198 | 0.5215 | 0.8837 |
0.0477 | 100.0 | 200 | 0.5202 | 0.8837 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1