BilalMuftuoglu's picture
End of training
bc31574 verified
|
raw
history blame
8.02 kB
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-85-fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9545454545454546

deit-base-distilled-patch16-224-85-fold1

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2307
  • Accuracy: 0.9545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 1.1776 0.25
No log 2.0 4 0.8165 0.3182
No log 3.0 6 0.7525 0.7045
No log 4.0 8 0.8074 0.7045
0.7495 5.0 10 0.6842 0.7045
0.7495 6.0 12 0.5606 0.6818
0.7495 7.0 14 0.5377 0.6818
0.7495 8.0 16 0.5761 0.7045
0.7495 9.0 18 0.5866 0.7045
0.4611 10.0 20 0.4894 0.7273
0.4611 11.0 22 0.6216 0.7273
0.4611 12.0 24 0.6272 0.7273
0.4611 13.0 26 0.4476 0.7727
0.4611 14.0 28 0.4451 0.75
0.3766 15.0 30 0.4370 0.7727
0.3766 16.0 32 0.4937 0.75
0.3766 17.0 34 0.4977 0.7955
0.3766 18.0 36 0.4551 0.8409
0.3766 19.0 38 0.3776 0.7727
0.3147 20.0 40 0.3347 0.8409
0.3147 21.0 42 0.5178 0.7727
0.3147 22.0 44 0.3430 0.8409
0.3147 23.0 46 0.3091 0.8409
0.3147 24.0 48 0.3995 0.8864
0.2176 25.0 50 0.2971 0.8409
0.2176 26.0 52 0.3137 0.8864
0.2176 27.0 54 0.2694 0.8864
0.2176 28.0 56 0.2589 0.8864
0.2176 29.0 58 0.3612 0.8636
0.1855 30.0 60 0.3406 0.8636
0.1855 31.0 62 0.4738 0.8864
0.1855 32.0 64 0.7612 0.7955
0.1855 33.0 66 0.5307 0.8864
0.1855 34.0 68 0.3346 0.8636
0.2006 35.0 70 0.3562 0.8409
0.2006 36.0 72 0.5255 0.8409
0.2006 37.0 74 0.3795 0.8409
0.2006 38.0 76 0.2924 0.9091
0.2006 39.0 78 0.2921 0.8864
0.161 40.0 80 0.3895 0.8409
0.161 41.0 82 0.3421 0.8182
0.161 42.0 84 0.2674 0.8864
0.161 43.0 86 0.2586 0.8864
0.161 44.0 88 0.4520 0.8409
0.1588 45.0 90 0.4300 0.8409
0.1588 46.0 92 0.2424 0.9318
0.1588 47.0 94 0.2645 0.9318
0.1588 48.0 96 0.2531 0.8864
0.1588 49.0 98 0.2614 0.8864
0.1103 50.0 100 0.3024 0.8864
0.1103 51.0 102 0.2797 0.9091
0.1103 52.0 104 0.2307 0.9545
0.1103 53.0 106 0.2635 0.9091
0.1103 54.0 108 0.5111 0.8409
0.1201 55.0 110 0.5371 0.8409
0.1201 56.0 112 0.2940 0.8864
0.1201 57.0 114 0.3015 0.9091
0.1201 58.0 116 0.2631 0.8864
0.1201 59.0 118 0.2830 0.8864
0.1037 60.0 120 0.3202 0.8636
0.1037 61.0 122 0.3526 0.8636
0.1037 62.0 124 0.3975 0.8409
0.1037 63.0 126 0.4785 0.8409
0.1037 64.0 128 0.4306 0.8636
0.1 65.0 130 0.3230 0.8636
0.1 66.0 132 0.3007 0.8864
0.1 67.0 134 0.2669 0.8864
0.1 68.0 136 0.2335 0.8864
0.1 69.0 138 0.1845 0.8864
0.0984 70.0 140 0.2261 0.8864
0.0984 71.0 142 0.3015 0.8864
0.0984 72.0 144 0.3138 0.8864
0.0984 73.0 146 0.2444 0.8864
0.0984 74.0 148 0.2060 0.9091
0.0826 75.0 150 0.2024 0.9318
0.0826 76.0 152 0.2503 0.8864
0.0826 77.0 154 0.2499 0.8864
0.0826 78.0 156 0.2099 0.9091
0.0826 79.0 158 0.2240 0.9091
0.0701 80.0 160 0.2228 0.9091
0.0701 81.0 162 0.2337 0.9091
0.0701 82.0 164 0.2113 0.9318
0.0701 83.0 166 0.1977 0.9091
0.0701 84.0 168 0.2021 0.9091
0.0846 85.0 170 0.2330 0.9318
0.0846 86.0 172 0.2333 0.9318
0.0846 87.0 174 0.2130 0.9318
0.0846 88.0 176 0.2090 0.9091
0.0846 89.0 178 0.2114 0.9091
0.0932 90.0 180 0.2061 0.9091
0.0932 91.0 182 0.2174 0.9091
0.0932 92.0 184 0.2429 0.9091
0.0932 93.0 186 0.2459 0.9091
0.0932 94.0 188 0.2293 0.9318
0.0742 95.0 190 0.2127 0.9318
0.0742 96.0 192 0.2014 0.9091
0.0742 97.0 194 0.2015 0.9091
0.0742 98.0 196 0.2063 0.9318
0.0742 99.0 198 0.2088 0.9318
0.0701 100.0 200 0.2096 0.9318

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1