BilalMuftuoglu's picture
End of training
239411d verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-hasta-55-fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6944444444444444

deit-base-distilled-patch16-224-hasta-55-fold3

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8865
  • Accuracy: 0.6944

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.5714 1 1.3455 0.3611
No log 1.7143 3 1.1600 0.3889
No log 2.8571 5 1.1451 0.3889
No log 4.0 7 1.1113 0.4167
No log 4.5714 8 1.1294 0.3611
1.114 5.7143 10 1.1000 0.4722
1.114 6.8571 12 1.0526 0.5
1.114 8.0 14 1.0222 0.5
1.114 8.5714 15 1.0203 0.4444
1.114 9.7143 17 0.9883 0.5556
1.114 10.8571 19 0.9686 0.5
0.928 12.0 21 0.9622 0.5556
0.928 12.5714 22 0.9396 0.5556
0.928 13.7143 24 0.9678 0.5556
0.928 14.8571 26 0.9045 0.6389
0.928 16.0 28 0.8842 0.6667
0.928 16.5714 29 0.8690 0.6389
0.7807 17.7143 31 0.8539 0.6389
0.7807 18.8571 33 0.9446 0.6389
0.7807 20.0 35 0.8785 0.6667
0.7807 20.5714 36 0.8500 0.6389
0.7807 21.7143 38 0.9317 0.6389
0.6419 22.8571 40 0.9105 0.6111
0.6419 24.0 42 0.9513 0.6111
0.6419 24.5714 43 0.9155 0.6111
0.6419 25.7143 45 0.8752 0.6389
0.6419 26.8571 47 0.8911 0.6111
0.6419 28.0 49 0.8772 0.5833
0.5401 28.5714 50 0.8496 0.5833
0.5401 29.7143 52 0.8562 0.6667
0.5401 30.8571 54 0.8377 0.6111
0.5401 32.0 56 0.9969 0.6111
0.5401 32.5714 57 1.0985 0.5833
0.5401 33.7143 59 0.9632 0.5833
0.4658 34.8571 61 0.8651 0.6389
0.4658 36.0 63 0.8731 0.6111
0.4658 36.5714 64 0.9148 0.5556
0.4658 37.7143 66 1.0383 0.6111
0.4658 38.8571 68 0.9203 0.6111
0.3816 40.0 70 0.8720 0.6389
0.3816 40.5714 71 0.8789 0.6389
0.3816 41.7143 73 0.8742 0.6667
0.3816 42.8571 75 0.8865 0.6944
0.3816 44.0 77 0.8931 0.6667
0.3816 44.5714 78 0.9036 0.6667
0.337 45.7143 80 0.9182 0.6389
0.337 46.8571 82 0.9406 0.6389
0.337 48.0 84 0.9587 0.6667
0.337 48.5714 85 0.9697 0.6389
0.337 49.7143 87 0.9818 0.6667
0.337 50.8571 89 0.9692 0.6389
0.2958 52.0 91 0.9426 0.6389
0.2958 52.5714 92 0.9374 0.6667
0.2958 53.7143 94 0.9338 0.6389
0.2958 54.8571 96 0.9337 0.6389
0.2958 56.0 98 0.9361 0.6389
0.2958 56.5714 99 0.9377 0.6389
0.2914 57.1429 100 0.9385 0.6389

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1