metadata
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model_index:
- name: hackMIT-finetuned-sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: sst2
metric:
name: Accuracy
type: accuracy
value: 0.8027522935779816
hackMIT-finetuned-sst2
This model is a fine-tuned version of Blaine-Mason/hackMIT-finetuned-sst2 on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 1.1086
- Accuracy: 0.8028
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.033238621168611e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 30
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0674 | 1.0 | 4210 | 1.1086 | 0.8028 |
Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3