SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2 on the code-search-net/code_search_net dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("BoghdadyJR/al-MiniLM-L6-v2")
# Run inference
sentences = [
    'Keypoint.copy',
    'def copy(self, x=None, y=None):\n        """\n        Create a shallow copy of the Keypoint object.\n\n        Parameters\n        ----------\n        x : None or number, optional\n            Coordinate of the keypoint on the x axis.\n            If ``None``, the instance\'s value will be copied.\n\n        y : None or number, optional\n            Coordinate of the keypoint on the y axis.\n            If ``None``, the instance\'s value will be copied.\n\n        Returns\n        -------\n        imgaug.Keypoint\n            Shallow copy.\n\n        """\n        return self.deepcopy(x=x, y=y)',
    'def build_words_dataset(words=None, vocabulary_size=50000, printable=True, unk_key=\'UNK\'):\n    """Build the words dictionary and replace rare words with \'UNK\' token.\n    The most common word has the smallest integer id.\n\n    Parameters\n    ----------\n    words : list of str or byte\n        The context in list format. You may need to do preprocessing on the words, such as lower case, remove marks etc.\n    vocabulary_size : int\n        The maximum vocabulary size, limiting the vocabulary size. Then the script replaces rare words with \'UNK\' token.\n    printable : boolean\n        Whether to print the read vocabulary size of the given words.\n    unk_key : str\n        Represent the unknown words.\n\n    Returns\n    --------\n    data : list of int\n        The context in a list of ID.\n    count : list of tuple and list\n        Pair words and IDs.\n            - count[0] is a list : the number of rare words\n            - count[1:] are tuples : the number of occurrence of each word\n            - e.g. [[\'UNK\', 418391], (b\'the\', 1061396), (b\'of\', 593677), (b\'and\', 416629), (b\'one\', 411764)]\n    dictionary : dictionary\n        It is `word_to_id` that maps word to ID.\n    reverse_dictionary : a dictionary\n        It is `id_to_word` that maps ID to word.\n\n    Examples\n    --------\n    >>> words = tl.files.load_matt_mahoney_text8_dataset()\n    >>> vocabulary_size = 50000\n    >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size)\n\n    References\n    -----------------\n    - `tensorflow/examples/tutorials/word2vec/word2vec_basic.py <https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/word2vec/word2vec_basic.py>`__\n\n    """\n    if words is None:\n        raise Exception("words : list of str or byte")\n\n    count = [[unk_key, -1]]\n    count.extend(collections.Counter(words).most_common(vocabulary_size - 1))\n    dictionary = dict()\n    for word, _ in count:\n        dictionary[word] = len(dictionary)\n    data = list()\n    unk_count = 0\n    for word in words:\n        if word in dictionary:\n            index = dictionary[word]\n        else:\n            index = 0  # dictionary[\'UNK\']\n            unk_count += 1\n        data.append(index)\n    count[0][1] = unk_count\n    reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))\n    if printable:\n        tl.logging.info(\'Real vocabulary size    %d\' % len(collections.Counter(words).keys()))\n        tl.logging.info(\'Limited vocabulary size {}\'.format(vocabulary_size))\n    if len(collections.Counter(words).keys()) < vocabulary_size:\n        raise Exception(\n            "len(collections.Counter(words).keys()) >= vocabulary_size , the limited vocabulary_size must be less than or equal to the read vocabulary_size"\n        )\n    return data, count, dictionary, reverse_dictionary',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8806
spearman_cosine 0.881
pearson_manhattan 0.8781
spearman_manhattan 0.8798
pearson_euclidean 0.8794
spearman_euclidean 0.881
pearson_dot 0.8806
spearman_dot 0.881
pearson_max 0.8806
spearman_max 0.881

Training Details

Training Dataset

code-search-net/code_search_net

  • Dataset: code-search-net/code_search_net
  • Size: 20,000 training samples
  • Columns: func_name and whole_func_string
  • Approximate statistics based on the first 1000 samples:
    func_name whole_func_string
    type string string
    details
    • min: 3 tokens
    • mean: 8.18 tokens
    • max: 21 tokens
    • min: 38 tokens
    • mean: 192.0 tokens
    • max: 384 tokens
  • Samples:
    func_name whole_func_string
    ImageGraphCut.__msgc_step3_discontinuity_localization def __msgc_step3_discontinuity_localization(self):
    """
    Estimate discontinuity in basis of low resolution image segmentation.
    :return: discontinuity in low resolution
    """
    import scipy

    start = self._start_time
    seg = 1 - self.segmentation.astype(np.int8)
    self.stats["low level object voxels"] = np.sum(seg)
    self.stats["low level image voxels"] = np.prod(seg.shape)
    # in seg is now stored low resolution segmentation
    # back to normal parameters
    # step 2: discontinuity localization
    # self.segparams = sparams_hi
    seg_border = scipy.ndimage.filters.laplace(seg, mode="constant")
    logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None))
    # logger.debug(str(np.max(seg_border)))
    # logger.debug(str(np.min(seg_border)))
    seg_border[seg_border != 0] = 1
    logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None))
    # scipy.ndimage.morphology.distance_transform_edt
    boundary_dilatation_distance = self.segparams["boundary_dilatation_distance"]
    seg = scipy.ndimage.morphology.binary_dilation(
    seg_border,
    # seg,
    np.ones(
    [
    (boundary_dilatation_distance * 2) + 1,
    (boundary_dilatation_distance * 2) + 1,
    (boundary_dilatation_distance * 2) + 1,
    ]
    ),
    )
    if self.keep_temp_properties:
    self.temp_msgc_lowres_discontinuity = seg
    else:
    self.temp_msgc_lowres_discontinuity = None

    if self.debug_images:
    import sed3

    pd = sed3.sed3(seg_border) # ), contour=seg)
    pd.show()
    pd = sed3.sed3(seg) # ), contour=seg)
    pd.show()
    # segzoom = scipy.ndimage.interpolation.zoom(seg.astype('float'), zoom,
    # order=0).astype('int8')
    self.stats["t3"] = time.time() - start
    return seg
    ImageGraphCut.__multiscale_gc_lo2hi_run def __multiscale_gc_lo2hi_run(self): # , pyed):
    """
    Run Graph-Cut segmentation with refinement of low resolution multiscale graph.
    In first step is performed normal GC on low resolution data
    Second step construct finer grid on edges of segmentation from first
    step.
    There is no option for use without use_boundary_penalties
    """
    # from PyQt4.QtCore import pyqtRemoveInputHook
    # pyqtRemoveInputHook()
    self._msgc_lo2hi_resize_init()
    self.__msgc_step0_init()

    hard_constraints = self.__msgc_step12_low_resolution_segmentation()
    # ===== high resolution data processing
    seg = self.__msgc_step3_discontinuity_localization()

    self.stats["t3.1"] = (time.time() - self._start_time)
    graph = Graph(
    seg,
    voxelsize=self.voxelsize,
    nsplit=self.segparams["block_size"],
    edge_weight_table=self._msgc_npenalty_table,
    compute_low_nodes_index=True,
    )

    # graph.run() = graph.generate_base_grid() + graph.split_voxels()
    # graph.run()
    graph.generate_base_grid()
    self.stats["t3.2"] = (time.time() - self._start_time)
    graph.split_voxels()

    self.stats["t3.3"] = (time.time() - self._start_time)

    self.stats.update(graph.stats)
    self.stats["t4"] = (time.time() - self._start_time)
    mul_mask, mul_val = self.__msgc_tlinks_area_weight_from_low_segmentation(seg)
    area_weight = 1
    unariesalt = self.__create_tlinks(
    self.img,
    self.voxelsize,
    self.seeds,
    area_weight=area_weight,
    hard_constraints=hard_constraints,
    mul_mask=None,
    mul_val=None,
    )
    # N-links prepared
    self.stats["t5"] = (time.time() - self._start_time)
    un, ind = np.unique(graph.msinds, return_index=True)
    self.stats["t6"] = (time.time() - self._start_time)

    self.stats["t7"] = (time.time() - self._start_time)
    unariesalt2_lo2hi = np.hstack(
    [unariesalt[ind, 0, 0].reshape(-1, 1), unariesalt[ind, 0, 1].reshape(-1, 1)]
    )
    nlinks_lo2hi = np.hstack([graph.edges, graph.edges_weights.reshape(-1, 1)])
    if self.debug_images:
    import sed3

    ed = sed3.sed3(unariesalt[:, :, 0].reshape(self.img.shape))
    ed.show()
    import sed3

    ed = sed3.sed3(unariesalt[:, :, 1].reshape(self.img.shape))
    ed.show()
    # ed = sed3.sed3(seg)
    # ed.show()
    # import sed3
    # ed = sed3.sed3(graph.data)
    # ed.show()
    # import sed3
    # ed = sed3.sed3(graph.msinds)
    # ed.show()

    # nlinks, unariesalt2, msinds = self.__msgc_step45678_construct_graph(area_weight, hard_constraints, seg)
    # self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds)
    self.__msgc_step9_finish_perform_gc_and_reshape(
    nlinks_lo2hi, unariesalt2_lo2hi, graph.msinds
    )
    self._msgc_lo2hi_resize_clean_finish()
    ImageGraphCut.__multiscale_gc_hi2lo_run def __multiscale_gc_hi2lo_run(self): # , pyed):
    """
    Run Graph-Cut segmentation with simplifiyng of high resolution multiscale graph.
    In first step is performed normal GC on low resolution data
    Second step construct finer grid on edges of segmentation from first
    step.
    There is no option for use without use_boundary_penalties
    """
    # from PyQt4.QtCore import pyqtRemoveInputHook
    # pyqtRemoveInputHook()

    self.__msgc_step0_init()
    hard_constraints = self.__msgc_step12_low_resolution_segmentation()
    # ===== high resolution data processing
    seg = self.__msgc_step3_discontinuity_localization()
    nlinks, unariesalt2, msinds = self.__msgc_step45678_hi2lo_construct_graph(
    hard_constraints, seg
    )
    self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds)
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

code-search-net/code_search_net

  • Dataset: code-search-net/code_search_net
  • Size: 15,000 evaluation samples
  • Columns: func_name and whole_func_string
  • Approximate statistics based on the first 1000 samples:
    func_name whole_func_string
    type string string
    details
    • min: 3 tokens
    • mean: 9.23 tokens
    • max: 24 tokens
    • min: 50 tokens
    • mean: 276.31 tokens
    • max: 384 tokens
  • Samples:
    func_name whole_func_string
    learn def learn(env,
    network,
    seed=None,
    lr=5e-4,
    total_timesteps=100000,
    buffer_size=50000,
    exploration_fraction=0.1,
    exploration_final_eps=0.02,
    train_freq=1,
    batch_size=32,
    print_freq=100,
    checkpoint_freq=10000,
    checkpoint_path=None,
    learning_starts=1000,
    gamma=1.0,
    target_network_update_freq=500,
    prioritized_replay=False,
    prioritized_replay_alpha=0.6,
    prioritized_replay_beta0=0.4,
    prioritized_replay_beta_iters=None,
    prioritized_replay_eps=1e-6,
    param_noise=False,
    callback=None,
    load_path=None,
    **network_kwargs
    ):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
    environment to train on
    network: string or a function
    neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
    (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
    will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
    prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
    learning rate for adam optimizer
    total_timesteps: int
    number of env steps to optimizer for
    buffer_size: int
    size of the replay buffer
    exploration_fraction: float
    fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
    final value of random action probability
    train_freq: int
    update the model every train_freq steps.
    set to None to disable printing
    batch_size: int
    size of a batched sampled from replay buffer for training
    print_freq: int
    how often to print out training progress
    set to None to disable printing
    checkpoint_freq: int
    how often to save the model. This is so that the best version is restored
    at the end of the training. If you do not wish to restore the best version at
    the end of the training set this variable to None.
    learning_starts: int
    how many steps of the model to collect transitions for before learning starts
    gamma: float
    discount factor
    target_network_update_freq: int
    update the target network every target_network_update_freq steps.
    prioritized_replay: True
    if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
    alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
    initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
    number of iterations over which beta will be annealed from initial value
    to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
    epsilon to add to the TD errors when updating priorities.
    param_noise: bool
    whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
    function called at every steps with state of the algorithm.
    If callback returns true training stops.
    load_path: str
    path to load the model from. (default: None)
    **network_kwargs
    additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
    Wrapper over act function. Adds ability to save it and load it.
    See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space
    def make_obs_ph(name):
    return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
    make_obs_ph=make_obs_ph,
    q_func=q_func,
    num_actions=env.action_space.n,
    optimizer=tf.train.AdamOptimizer(learning_rate=lr),
    gamma=gamma,
    grad_norm_clipping=10,
    param_noise=param_noise
    )

    act_params = {
    'make_obs_ph': make_obs_ph,
    'q_func': q_func,
    'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
    replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
    if prioritized_replay_beta_iters is None:
    prioritized_replay_beta_iters = total_timesteps
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
    initial_p=prioritized_replay_beta0,
    final_p=1.0)
    else:
    replay_buffer = ReplayBuffer(buffer_size)
    beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
    initial_p=1.0,
    final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
    td = checkpoint_path or td

    model_file = os.path.join(td, "model")
    model_saved = False

    if tf.train.latest_checkpoint(td) is not None:
    load_variables(model_file)
    logger.log('Loaded model from {}'.format(model_file))
    model_saved = True
    elif load_path is not None:
    load_variables(load_path)
    logger.log('Loaded model from {}'.format(load_path))


    for t in range(total_timesteps):
    if callback is not None:
    if callback(locals(), globals()):
    break
    # Take action and update exploration to the newest value
    kwargs = {}
    if not param_noise:
    update_eps = exploration.value(t)
    update_param_noise_threshold = 0.
    else:
    update_eps = 0.
    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
    # for detailed explanation.
    update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
    kwargs['reset'] = reset
    kwargs['update_param_noise_threshold'] = update_param_noise_threshold
    kwargs['update_param_noise_scale'] = True
    action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
    env_action = action
    reset = False
    new_obs, rew, done, _ = env.step(env_action)
    # Store transition in the replay buffer.
    replay_buffer.add(obs, action, rew, new_obs, float(done))
    obs = new_obs

    episode_rewards[-1] += rew
    if done:
    obs = env.reset()
    episode_rewards.append(0.0)
    reset = True

    if t > learning_starts and t % train_freq == 0:
    # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
    if prioritized_replay:
    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
    else:
    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
    weights, batch_idxes = np.ones_like(rewards), None
    td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
    if prioritized_replay:
    new_priorities = np.abs(td_errors) + prioritized_replay_eps
    replay_buffer.update_priorities(batch_idxes, new_priorities)

    if t > learning_starts and t % target_network_update_freq == 0:
    # Update target network periodically.
    update_target()

    mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
    num_episodes = len(episode_rewards)
    if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
    logger.record_tabular("steps", t)
    logger.record_tabular("episodes", num_episodes)
    logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
    logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
    logger.dump_tabular()

    if (checkpoint_freq is not None and t > learning_starts and
    num_episodes > 100 and t % checkpoint_freq == 0):
    if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
    if print_freq is not None:
    logger.log("Saving model due to mean reward increase: {} -> {}".format(
    saved_mean_reward, mean_100ep_reward))
    save_variables(model_file)
    model_saved = True
    saved_mean_reward = mean_100ep_reward
    if model_saved:
    if print_freq is not None:
    logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
    load_variables(model_file)

    return act
    ActWrapper.save_act def save_act(self, path=None):
    """Save model to a pickle located at path"""
    if path is None:
    path = os.path.join(logger.get_dir(), "model.pkl")

    with tempfile.TemporaryDirectory() as td:
    save_variables(os.path.join(td, "model"))
    arc_name = os.path.join(td, "packed.zip")
    with zipfile.ZipFile(arc_name, 'w') as zipf:
    for root, dirs, files in os.walk(td):
    for fname in files:
    file_path = os.path.join(root, fname)
    if file_path != arc_name:
    zipf.write(file_path, os.path.relpath(file_path, td))
    with open(arc_name, "rb") as f:
    model_data = f.read()
    with open(path, "wb") as f:
    cloudpickle.dump((model_data, self._act_params), f)
    nature_cnn def nature_cnn(unscaled_images, **conv_kwargs):
    """
    CNN from Nature paper.
    """
    scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
    activ = tf.nn.relu
    h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),
    **conv_kwargs))
    h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))
    h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))
    h3 = conv_to_fc(h3)
    return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss sts-dev_spearman_cosine
0 0 - - 0.8810
0.08 100 0.4124 0.2191 -
0.16 200 0.108 0.0993 -
0.24 300 0.127 0.0756 -
0.32 400 0.0728 - -
0.08 100 0.0662 0.0683 -
0.16 200 0.0321 0.0660 -
0.24 300 0.0815 0.0584 -
0.32 400 0.049 0.0591 -
0.4 500 0.0636 0.0612 -
0.48 600 0.0929 0.0577 -
0.56 700 0.0342 0.0568 -
0.64 800 0.0265 0.0572 -
0.72 900 0.0406 0.0551 -
0.8 1000 0.039 0.0549 -
0.88 1100 0.0376 0.0551 -
0.96 1200 0.0823 0.0556 -

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.3
  • PyTorch: 2.1.2
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
11
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BoghdadyJR/al-MiniLM-L6-v2

Finetuned
(188)
this model

Dataset used to train BoghdadyJR/al-MiniLM-L6-v2

Evaluation results