NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated
NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated is a merge of the following models using LazyMergekit:
Quantised versions of this model are available in GGUF format from here Or use the following direct links:
open-llm-leaderboard results
Average | IFEval | BBH | MATH Lvl 5 | GPQA | MUSR | MMLU-PRO | |
---|---|---|---|---|---|---|---|
27.5 | 79.99 | 30.76 | 10.27 | 4.14 | 9.47 | 30.37 | 🤗 Open LLM Leaderboard |
🧩 Configuration
models:
- model: NousResearch/Meta-Llama-3.1-8B-Instruct
- model: mlabonne/NeuralDaredevil-8B-abliterated
parameters:
density: 0.53
weight: 0.55
- model: grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B
parameters:
density: 0.53
weight: 0.45
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3.1-8B-Instruct
parameters:
int8_mask: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-ablorabliterated"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated
Merge model
this model
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard79.990
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard30.760
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard10.270
- acc_norm on GPQA (0-shot)Open LLM Leaderboard4.140
- acc_norm on MuSR (0-shot)Open LLM Leaderboard9.470
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard30.370