Text-to-Video
Diffusers
stable-diffusion
animatediff
PeterL1n's picture
Update readme
d8a76e9
|
raw
history blame
4.03 kB
metadata
license: creativeml-openrail-m
tags:
  - text-to-video
  - stable-diffusion
  - animatediff
library_name: diffusers
inference: false

AnimateDiff-Lightning

AnimateDiff-Lightning is a lightning-fast text-to-video generation model. It can generate 16-frame 512px videos in a few steps. For more information, please refer to our research paper: AnimateDiff-Lightning: Cross-Model Diffusion Distillation. We release the model as part of the research.

Our models are distilled from AnimateDiff SD1.5 v2. This repository contains checkpoints for 1-step, 2-step, 4-step, and 8-step distilled models. The generation quality of our 2-step, 4-step, and 8-step model is great. Our 1-step model is only provided for research purposes.

Recommendation

AnimateDiff-Lightning produces the best results when used with stylized base models. We recommend using the following base models:

Realistic

Anime & Cartoon

Additionally, feel free to explore different settings. We find using 3 inference steps on the 2-step model produces great results. We find certain base models produces better results with CFG. We also recommend using Motion LoRAs as they produce stronger motion. We use Motion LoRAs with strength 0.7~0.8 to avoid watermark.

Diffusers Usage

import torch
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_gif
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

device = "cuda"
dtype = torch.float16

step = 4  # Options: [1,2,4,8]
repo = "AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
base = "SG161222/Realistic_Vision_V5.1_noVAE"  # Choose to your favorite base model.

adapter = MotionAdapter().to(device, dtype)
adapter.load_state_dict(load_file(hf_hub_download(repo ,ckpt), device=device))
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

output = pipe(prompt="A girl smiling", guidance_scale=1.0, num_inference_steps=step)
export_to_gif(output.frames[0], "animation.gif")

ComfyUI Usage

  1. Download AnimateDiff-Lightning ComfyUI Workflow

  2. Install nodes. You can install them manually or use ComfyUI-Manager.

  3. Download your favorite base model checkpoint and put them under /models/checkpoints/

  4. Download AnimateDiff-Lightning checkpoint animatediff_lightning_Nstep_comfyui.safetensors and put them under /custom_nodes/ComfyUI-AnimateDiff-Evolved/models/

ComfyUI Workflow