CAMeLBERT-MSA Poetry Classification Model
Model description
CAMeLBERT-MSA Poetry Classification Model is a poetry classification model that was built by fine-tuning the CAMeLBERT Modern Standard Arabic (MSA) model. For the fine-tuning, we used the APCD dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper "The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models." Our fine-tuning code can be found here.
Intended uses
You can use the CAMeLBERT-MSA Poetry Classification model as part of the transformers pipeline. This model will also be available in CAMeL Tools soon.
How to use
To use the model with a transformers pipeline:
>>> from transformers import pipeline
>>> poetry = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-poetry')
>>> # A list of verses where each verse consists of two parts.
>>> verses = [
['الخيل والليل والبيداء تعرفني' ,'والسيف والرمح والقرطاس والقلم'],
['قم للمعلم وفه التبجيلا' ,'كاد المعلم ان يكون رسولا']
]
>>> # A function that concatenates the halves of each verse by using the [SEP] token.
>>> join_verse = lambda half: ' [SEP] '.join(half)
>>> # Apply this to all the verses in the list.
>>> verses = [join_verse(verse) for verse in verses]
>>> poetry(sentences)
[{'label': 'البسيط', 'score': 0.9914996027946472},
{'label': 'الكامل', 'score': 0.917242169380188}]
Note: to download our models, you would need transformers>=3.5.0
.
Otherwise, you could download the models manually.
Citation
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.