Model Card for Model ID
在llama-2-13b上使用open orca前5萬筆資料集進行訓練
Fine-Tuning Information
- GPU: RTX4090 (single core / 24564MiB)
- model: meta-llama/Llama-2-13b-hf
- dataset: Open-Orca/OpenOrca (取前5w筆訓練集)
- peft_type: LoRA
- lora_rank: 8
- lora_target: q_proj, v_proj
- per_device_train_batch_size: 8
- gradient_accumulation_steps: 8
- learning_rate : 5e-5
- epoch: 1
- precision: bf16
- quantization: load_in_4bit
Fine-Tuning Detail
- train_loss: 0.903261117822906
- train_runtime: 7:19:57 (use deepspeed)
Evaluation
- 評估結果來自HuggingFaceH4/open_llm_leaderboard
- 與Llama-2-13b和其他使用Open-Orca的模型比較4種Benchmark
- Benchmark包含ARC、HellaSwag、MMLU、TruthfulQA
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA |
---|---|---|---|---|---|
meta-llama/Llama-2-13b-hf | 56.9 | 58.11 | 80.97 | 54.34 | 34.17 |
meta-llama/Llama-2-13b-chat-hf | 59.93 | 59.04 | 81.94 | 54.64 | 44.12 |
Open-Orca/OpenOrca-Platypus2-13B | 64.6 | 62.8 | 83.15 | 59.39 | 53.08 |
Open-Orca/OpenOrcaxOpenChat-Preview2-13B | 63.81 | 62.37 | 82.96 | 58.68 | 51.23 |
circulus/Llama-2-13b-orca-v1 | 62.91 | 62.03 | 82.27 | 57.71 | 49.61 |
CHIH-HUNG/llama-2-13b-open_orca_20w | 60.46 | 59.9 | 82.51 | 56.3 | 43.14 |
CHIH-HUNG/llama-2-13b-OpenOrca_5w | 61.2 | 61.01 | 82.82 | 56.09 | 44.87 |
How to convert dataset to json
- 在load_dataset中輸入資料集名稱,並且在take中輸入要取前幾筆資料
- 觀察該資料集的欄位名稱,填入example欄位中(例如system_prompt、question、response)
- 最後指定json檔儲存位置 (json_filename)
import json
from datasets import load_dataset
# 讀取數據集,take可以取得該數據集前n筆資料
dataset = load_dataset("Open-Orca/OpenOrca", split="train", streaming=True).take(50000)
# 提取所需欄位並建立新的字典列表
extracted_data = []
for example in dataset:
extracted_example = {
### open orca
"system_prompt": example["system_prompt"],
"question": example["question"],
"response": example["response"]
}
extracted_data.append(extracted_example)
# 指定 JSON 文件名稱
json_filename = "open_orca.json"
# 寫入 JSON 文件
with open(json_filename, "w") as json_file:
json.dump(extracted_data, json_file, indent=4)
print(f"數據已提取並保存為 {json_filename}")
- Downloads last month
- 1,275
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.