CQSB
/

GianLMB commited on
Commit
21904fd
·
verified ·
1 Parent(s): 2f3e606

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +12 -8
README.md CHANGED
@@ -3,8 +3,9 @@
3
  tags:
4
  - LoRA
5
  - protein language model
 
6
  datasets:
7
- - SoftDis
8
  ---
9
 
10
  # LoRA-DR-suite
@@ -70,21 +71,24 @@ import torch.nn.functional as F
70
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
71
  model = model.to(device)
72
 
73
- # example sequence (DP02948)
74
- sequence = "METLTLLWRASSSCLLVVLSHSLLRLLGVRCLEKSGAQPNKLFRPPCCQKGPSFARHSRCVYYTQSRE"
75
 
76
  # each pre-trained model adds its own special tokens to the tokenized sequence,
77
- # special_tokens_mask allows to deal with them (padding included, for batched inputs)
78
- # without changing the code
79
- inputs = tokenizer([sequence], return_tensors="pt", return_special_tokens_mask=True)
 
 
80
  input_ids = inputs['input_ids'].to(device)
81
  attention_mask = inputs['attention_mask'].to(device)
82
  special_tokens_mask = inputs['special_tokens_mask'].bool()
83
 
84
  # extract predicted disorder probability
85
  with torch.inference_mode():
86
- output = model(input_ids=input_ids,attention_mask=attention_mask).squeeze(0).cpu()
87
- disorder_proba = F.softmax(output[~special_tokens_mask], dim=-1)[:, 1]
 
88
  ```
89
 
90
  ## How to cite
 
3
  tags:
4
  - LoRA
5
  - protein language model
6
+ base_model: facebook/esm2_t12_35M_UR50D
7
  datasets:
8
+ - CQSB/SoftDis
9
  ---
10
 
11
  # LoRA-DR-suite
 
71
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
72
  model = model.to(device)
73
 
74
+ # example sequence
75
+ sequence = "TAIWEQHTVTLHRAPGFGFGIAISGGRDNPHFQSGETSIVISDVLKG"
76
 
77
  # each pre-trained model adds its own special tokens to the tokenized sequence,
78
+ # special_tokens_mask allows to deal with them (padding included, for batched
79
+ # inputs) without changing the code
80
+ inputs = tokenizer(
81
+ [sequence], return_tensors="pt", return_special_tokens_mask=True
82
+ )
83
  input_ids = inputs['input_ids'].to(device)
84
  attention_mask = inputs['attention_mask'].to(device)
85
  special_tokens_mask = inputs['special_tokens_mask'].bool()
86
 
87
  # extract predicted disorder probability
88
  with torch.inference_mode():
89
+ output = model(input_ids, attention_mask).logits.cpu()
90
+ output = output[~special_tokens_mask, :]
91
+ disorder_proba = F.softmax(output, dim=-1)[:, 1]
92
  ```
93
 
94
  ## How to cite