|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" LLaMA model configuration"""
|
|
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.utils import logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class LlamaConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the LLaMA-7B.
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 32000):
|
|
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`LlamaModel`]
|
|
hidden_size (`int`, *optional*, defaults to 4096):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 11008):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer decoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
Number of attention heads for each attention layer in the Transformer decoder.
|
|
num_key_value_heads (`int`, *optional*):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details checkout [this
|
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
|
`num_attention_heads`.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
|
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
|
Llama 2 up to 4096, CodeLlama up to 16384.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
pad_token_id (`int`, *optional*):
|
|
Padding token id.
|
|
bos_token_id (`int`, *optional*, defaults to 1):
|
|
Beginning of stream token id.
|
|
eos_token_id (`int`, *optional*, defaults to 2):
|
|
End of stream token id.
|
|
pretraining_tp (`int`, *optional*, defaults to 1):
|
|
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
|
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
|
|
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
|
issue](https://github.com/pytorch/pytorch/issues/76232).
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
Whether to tie weight embeddings
|
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
|
The base period of the RoPE embeddings.
|
|
rope_scaling (`Dict`, *optional*):
|
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
|
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
|
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
|
these scaling strategies behave:
|
|
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
|
experimental feature, subject to breaking API changes in future versions.
|
|
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
|
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
```python
|
|
>>> from transformers import LlamaModel, LlamaConfig
|
|
>>> # Initializing a LLaMA llama-7b style configuration
|
|
>>> configuration = LlamaConfig()
|
|
>>> # Initializing a model from the llama-7b style configuration
|
|
>>> model = LlamaModel(configuration)
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "llama"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=32000,
|
|
hidden_size=4096,
|
|
intermediate_size=11008,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=32,
|
|
num_key_value_heads=None,
|
|
hidden_act="silu",
|
|
max_position_embeddings=2048,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-6,
|
|
use_cache=True,
|
|
pad_token_id=None,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
pretraining_tp=1,
|
|
tie_word_embeddings=False,
|
|
rope_theta=10000.0,
|
|
rope_scaling=None,
|
|
attention_bias=False,
|
|
attention_dropout=0.0,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
|
|
|
|
if num_key_value_heads is None:
|
|
num_key_value_heads = num_attention_heads
|
|
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.pretraining_tp = pretraining_tp
|
|
self.use_cache = use_cache
|
|
self.rope_theta = rope_theta
|
|
self.rope_scaling = rope_scaling
|
|
self._rope_scaling_validation()
|
|
self.attention_bias = attention_bias
|
|
self.attention_dropout = attention_dropout
|
|
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
def _rope_scaling_validation(self):
|
|
"""
|
|
Validate the `rope_scaling` configuration.
|
|
"""
|
|
if self.rope_scaling is None:
|
|
return
|
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
|
raise ValueError(
|
|
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
|
)
|
|
rope_scaling_type = self.rope_scaling.get("type", None)
|
|
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
|
raise ValueError(
|
|
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
|
)
|
|
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
|
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
|
|
|
|
|
from typing import Union
|
|
from transformers import PretrainedConfig
|
|
import os
|
|
|
|
|
|
class SigLipVisionConfig(PretrainedConfig):
|
|
model_type = "siglip_vision_model"
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size=1152,
|
|
image_mean=(0.5, 0.5, 0.5),
|
|
intermediate_size=4304,
|
|
num_hidden_layers=27,
|
|
num_attention_heads=16,
|
|
num_channels=3,
|
|
image_size=384,
|
|
patch_size=14,
|
|
hidden_act="gelu_pytorch_tanh",
|
|
layer_norm_eps=1e-6,
|
|
attention_dropout=0.0,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_channels = num_channels
|
|
self.patch_size = patch_size
|
|
self.image_size = image_size
|
|
self.attention_dropout = attention_dropout
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.hidden_act = hidden_act
|
|
self.image_mean = image_mean
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
|
cls._set_token_in_kwargs(kwargs)
|
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
|
|
|
|
|
if config_dict.get("model_type") == "siglip":
|
|
config_dict = config_dict["vision_config"]
|
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
|
logger.warning(
|
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
|
)
|
|
|
|
return cls.from_dict(config_dict, **kwargs)
|
|
|
|
|
|
class CapxLlamaConfig(LlamaConfig):
|
|
model_type = "capx-llama" |