xhsgirl_v0.2SDXL / README.md
ChandlerGIS's picture
Model card auto-generated by SimpleTuner
a19b69e verified
metadata
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-xl-base-1.0
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - lora
  - template:sd-lora
inference: true

xhsgirl_v0.2SDXL

This is a LoRA derived from stabilityai/stable-diffusion-xl-base-1.0.

The main validation prompt used during training was:

a woman side view upper body, hands clasped near mouth, strapless dress, long wavy hair, black car hood, forest background

Validation settings

  • CFG: 5.5
  • CFG Rescale: 0.0
  • Steps: 30
  • Sampler: None
  • Seed: 42
  • Resolution: 1024

Note: The validation settings are not necessarily the same as the training settings.

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 2999
  • Training steps: 3000
  • Learning rate: 8e-06
  • Effective batch size: 16
    • Micro-batch size: 4
    • Gradient accumulation steps: 4
    • Number of GPUs: 1
  • Prediction type: epsilon
  • Rescaled betas zero SNR: False
  • Optimizer: AdamW, stochastic bf16
  • Precision: Pure BF16
  • Xformers: Not used
  • LoRA Rank: 16
  • LoRA Alpha: None
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

xhsgirl_v0.2sdxl

  • Repeats: 0
  • Total number of images: 16
  • Total number of aspect buckets: 1
  • Resolution: 1024 px
  • Cropped: True
  • Crop style: center
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
adapter_id = 'ChandlerGIS/xhsgirl_v0.2SDXL'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "a woman side view upper body, hands clasped near mouth, strapless dress, long wavy hair, black car hood, forest background"
negative_prompt = 'blurry, cropped, ugly'

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=30,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=5.5,
    guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")