llama_2_gsm8k_per_class_reflect
This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6129
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4804 | 0.7692 | 5 | 1.1583 |
0.9708 | 1.5385 | 10 | 0.8724 |
0.7685 | 2.3077 | 15 | 0.7143 |
0.6454 | 3.0769 | 20 | 0.6602 |
0.5826 | 3.8462 | 25 | 0.6317 |
0.5458 | 4.6154 | 30 | 0.6193 |
0.4844 | 5.3846 | 35 | 0.6151 |
0.506 | 6.1538 | 40 | 0.6133 |
0.4766 | 6.9231 | 45 | 0.6126 |
0.4639 | 7.6923 | 50 | 0.6129 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 8
Model tree for CharlesLi/llama_2_gsm8k_per_class_reflect
Base model
meta-llama/Llama-2-7b-chat-hf