YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

What does this model do?

This model generates a subject line for the email, given the whole email as input. It is fine-tuned T5-Base

Here is how to use this model


from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

model = AutoModelForSeq2SeqLM.from_pretrained("Chirayu/subject-generator-t5-base")
tokenizer = AutoTokenizer.from_pretrained("Chirayu/subject-generator-t5-base")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

def get_subject(content, num_beams=5,max_length=512, repetition_penalty=2.5, length_penalty=1, early_stopping=True,top_p=.95, top_k=50, num_return_sequences=3):
  
  text =  "title: " + content + " </s>"
  
  input_ids = tokenizer.encode(
    text, return_tensors="pt", add_special_tokens=True
  )
  
  input_ids = input_ids.to(device)
  generated_ids = model.generate(
      input_ids=input_ids,
     
      num_beams=num_beams,
      max_length=max_length,
      repetition_penalty=repetition_penalty,
      length_penalty=length_penalty,
      early_stopping=early_stopping,
      top_p=top_p,
      top_k=top_k,
      num_return_sequences=num_return_sequences,
  )
  subjects = [tokenizer.decode(generated_id,skip_special_tokens=True,clean_up_tokenization_spaces=True,) for generated_id in generated_ids]
  return subjects
Downloads last month
12
Safetensors
Model size
223M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.