AutoSeg4ETICA / nnunet /dataset_conversion /Task032_BraTS_2018.py
Chris Xiao
upload files
c642393
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from multiprocessing.pool import Pool
import numpy as np
from collections import OrderedDict
from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.dataset_conversion.Task043_BraTS_2019 import copy_BraTS_segmentation_and_convert_labels
from nnunet.paths import nnUNet_raw_data
import SimpleITK as sitk
import shutil
def convert_labels_back_to_BraTS(seg: np.ndarray):
new_seg = np.zeros_like(seg)
new_seg[seg == 1] = 2
new_seg[seg == 3] = 4
new_seg[seg == 2] = 1
return new_seg
def load_convert_save(filename, input_folder, output_folder):
a = sitk.ReadImage(join(input_folder, filename))
b = sitk.GetArrayFromImage(a)
c = convert_labels_back_to_BraTS(b)
d = sitk.GetImageFromArray(c)
d.CopyInformation(a)
sitk.WriteImage(d, join(output_folder, filename))
def convert_labels_back_to_BraTS_2018_2019_convention(input_folder: str, output_folder: str, num_processes: int = 12):
"""
reads all prediction files (nifti) in the input folder, converts the labels back to BraTS convention and saves the
result in output_folder
:param input_folder:
:param output_folder:
:return:
"""
maybe_mkdir_p(output_folder)
nii = subfiles(input_folder, suffix='.nii.gz', join=False)
p = Pool(num_processes)
p.starmap(load_convert_save, zip(nii, [input_folder] * len(nii), [output_folder] * len(nii)))
p.close()
p.join()
if __name__ == "__main__":
"""
REMEMBER TO CONVERT LABELS BACK TO BRATS CONVENTION AFTER PREDICTION!
"""
task_name = "Task032_BraTS2018"
downloaded_data_dir = "/home/fabian/Downloads/BraTS2018_train_val_test_data/MICCAI_BraTS_2018_Data_Training"
target_base = join(nnUNet_raw_data, task_name)
target_imagesTr = join(target_base, "imagesTr")
target_imagesVal = join(target_base, "imagesVal")
target_imagesTs = join(target_base, "imagesTs")
target_labelsTr = join(target_base, "labelsTr")
maybe_mkdir_p(target_imagesTr)
maybe_mkdir_p(target_imagesVal)
maybe_mkdir_p(target_imagesTs)
maybe_mkdir_p(target_labelsTr)
patient_names = []
for tpe in ["HGG", "LGG"]:
cur = join(downloaded_data_dir, tpe)
for p in subdirs(cur, join=False):
patdir = join(cur, p)
patient_name = tpe + "__" + p
patient_names.append(patient_name)
t1 = join(patdir, p + "_t1.nii.gz")
t1c = join(patdir, p + "_t1ce.nii.gz")
t2 = join(patdir, p + "_t2.nii.gz")
flair = join(patdir, p + "_flair.nii.gz")
seg = join(patdir, p + "_seg.nii.gz")
assert all([
isfile(t1),
isfile(t1c),
isfile(t2),
isfile(flair),
isfile(seg)
]), "%s" % patient_name
shutil.copy(t1, join(target_imagesTr, patient_name + "_0000.nii.gz"))
shutil.copy(t1c, join(target_imagesTr, patient_name + "_0001.nii.gz"))
shutil.copy(t2, join(target_imagesTr, patient_name + "_0002.nii.gz"))
shutil.copy(flair, join(target_imagesTr, patient_name + "_0003.nii.gz"))
copy_BraTS_segmentation_and_convert_labels(seg, join(target_labelsTr, patient_name + ".nii.gz"))
json_dict = OrderedDict()
json_dict['name'] = "BraTS2018"
json_dict['description'] = "nothing"
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = "see BraTS2018"
json_dict['licence'] = "see BraTS2019 license"
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "T1",
"1": "T1ce",
"2": "T2",
"3": "FLAIR"
}
json_dict['labels'] = {
"0": "background",
"1": "edema",
"2": "non-enhancing",
"3": "enhancing",
}
json_dict['numTraining'] = len(patient_names)
json_dict['numTest'] = 0
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in
patient_names]
json_dict['test'] = []
save_json(json_dict, join(target_base, "dataset.json"))
del tpe, cur
downloaded_data_dir = "/home/fabian/Downloads/BraTS2018_train_val_test_data/MICCAI_BraTS_2018_Data_Validation"
for p in subdirs(downloaded_data_dir, join=False):
patdir = join(downloaded_data_dir, p)
patient_name = p
t1 = join(patdir, p + "_t1.nii.gz")
t1c = join(patdir, p + "_t1ce.nii.gz")
t2 = join(patdir, p + "_t2.nii.gz")
flair = join(patdir, p + "_flair.nii.gz")
assert all([
isfile(t1),
isfile(t1c),
isfile(t2),
isfile(flair),
]), "%s" % patient_name
shutil.copy(t1, join(target_imagesVal, patient_name + "_0000.nii.gz"))
shutil.copy(t1c, join(target_imagesVal, patient_name + "_0001.nii.gz"))
shutil.copy(t2, join(target_imagesVal, patient_name + "_0002.nii.gz"))
shutil.copy(flair, join(target_imagesVal, patient_name + "_0003.nii.gz"))
downloaded_data_dir = "/home/fabian/Downloads/BraTS2018_train_val_test_data/MICCAI_BraTS_2018_Data_Testing_FIsensee"
for p in subdirs(downloaded_data_dir, join=False):
patdir = join(downloaded_data_dir, p)
patient_name = p
t1 = join(patdir, p + "_t1.nii.gz")
t1c = join(patdir, p + "_t1ce.nii.gz")
t2 = join(patdir, p + "_t2.nii.gz")
flair = join(patdir, p + "_flair.nii.gz")
assert all([
isfile(t1),
isfile(t1c),
isfile(t2),
isfile(flair),
]), "%s" % patient_name
shutil.copy(t1, join(target_imagesTs, patient_name + "_0000.nii.gz"))
shutil.copy(t1c, join(target_imagesTs, patient_name + "_0001.nii.gz"))
shutil.copy(t2, join(target_imagesTs, patient_name + "_0002.nii.gz"))
shutil.copy(flair, join(target_imagesTs, patient_name + "_0003.nii.gz"))